A Non-local Rank-Constraint Hyperspectral Images Denoising Method with 3-D Anisotropic Total Variation
文献类型:会议论文
作者 | Gong, Tao1,2; Wen, Desheng2![]() |
出版日期 | 2020-01-11 |
会议日期 | 2019-11-14 |
会议地点 | Phuket, Thailand |
卷号 | 1438 |
期号 | 1 |
DOI | 10.1088/1742-6596/1438/1/012024 |
英文摘要 | Hyperspectral Images (HSIs) are usually degraded by many kinds of noise called mixed noise, which greatly limits the subsequent applications of HSIs. Many researches have proved the patch-based low-rank methods and the total variation (TV) based approaches have a good effect on reducing noise in HSIs. Here, we propose a non-local patch based rank-constraint HSIs noise suppression methods with a global 3-D anisotropic total variation (NLRATV). Differing from previous patch-based methods which usually ignore spatial structural information, we add more structural constraints with the non-local similarity across patches for suppressing the structural noise that exists at the same location of many bands. Besides, we utilize the global 3-D anisotropic total variation to ensure its smoothness in spatial and spectral dimensionalities while reconstructing the image. The augmented Lagrange multiplier method is adopted to optimize the proposed algorithm. The real data experiments have proved the superiority of NLRATV in decreasing mixed and dense noise. © Published under licence by IOP Publishing Ltd. |
产权排序 | 1 |
会议录 | 2019 4th International Conference on Communication, Image and Signal Processing, CCISP 2019
![]() |
会议录出版者 | Institute of Physics Publishing |
语种 | 英语 |
ISSN号 | 17426588;17426596 |
源URL | [http://ir.opt.ac.cn/handle/181661/93242] ![]() |
专题 | 西安光学精密机械研究所_空间光学应用研究室 |
通讯作者 | Gong, Tao |
作者单位 | 1.University of Chinese Academy of Sciences, China 2.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, China; |
推荐引用方式 GB/T 7714 | Gong, Tao,Wen, Desheng,He, Tianbin. A Non-local Rank-Constraint Hyperspectral Images Denoising Method with 3-D Anisotropic Total Variation[C]. 见:. Phuket, Thailand. 2019-11-14. |
入库方式: OAI收割
来源:西安光学精密机械研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。