Discriminative structure learning of sum-product networks for data stream classification
文献类型:期刊论文
作者 | Sun, Zhengya3![]() ![]() ![]() ![]() |
刊名 | NEURAL NETWORKS
![]() |
出版日期 | 2020-03-01 |
卷号 | 123页码:163-175 |
关键词 | Sum-product network Discriminative structure learning Data stream classification |
ISSN号 | 0893-6080 |
DOI | 10.1016/j.neunet.2019.12.002 |
通讯作者 | Sun, Zhengya(zhengya.sun@ia.ac.cn) |
英文摘要 | Sum-product network (SPN) is a deep probabilistic representation that allows for exact and tractable inference. There has been a trend of online SPN structure learning from massive and continuous data streams. However, online structure learning of SPNs has been introduced only for the generative settings so far. In this paper, we present an online discriminative approach for SPNs for learning both the structure and parameters. The basic idea is to keep track of informative and representative examples to capture the trend of time-changing class distributions. Specifically, by estimating the goodness of model fitting of data points and dynamically maintaining a certain amount of informative examples over time, we generate new sub-SPNs in a recursive and top-down manner. Meanwhile, an outlier-robust margin-based log-likelihood loss is applied locally to each data point and the parameters of SPN are updated continuously using most probable explanation (MPE) inference. This leads to a fast yet powerful optimization procedure and improved discrimination capability between the genuine class and rival classes. Empirical results show that the proposed approach achieves better prediction performance than the state-of-the-art online structure learner for SPNs, while promising order-ofmagnitude speedup. Comparison with state-of-the-art stream classifiers further proves the superiority of our approach. (C) 2019 Elsevier Ltd. All rights reserved. |
资助项目 | National Key R&D Program of China[2017YFC0803700] ; National Natural Science Foundation of China[61876183] ; National Natural Science Foundation of China[61721004] ; National Natural Science Foundation of China[61772525] ; National Natural Science Foundation of China[U1636220] ; Natural Science Foundation of Beijing Municipality[4172063] |
WOS研究方向 | Computer Science ; Neurosciences & Neurology |
语种 | 英语 |
WOS记录号 | WOS:000511985000014 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
资助机构 | National Key R&D Program of China ; National Natural Science Foundation of China ; Natural Science Foundation of Beijing Municipality |
源URL | [http://ir.ia.ac.cn/handle/173211/28624] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | Sun, Zhengya |
作者单位 | 1.UCAS, Sch Artificial Intelligence, Beijing 100049, Peoples R China 2.CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China 3.Chinese Acad Sci, Precise Percept & Control Res Ctr, Inst Automat, Beijing 100190, Peoples R China 4.Chinese Acad Sci, NLPR, Inst Automat, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Sun, Zhengya,Liu, Cheng-Lin,Niu, Jinghao,et al. Discriminative structure learning of sum-product networks for data stream classification[J]. NEURAL NETWORKS,2020,123:163-175. |
APA | Sun, Zhengya,Liu, Cheng-Lin,Niu, Jinghao,&Zhang, Wensheng.(2020).Discriminative structure learning of sum-product networks for data stream classification.NEURAL NETWORKS,123,163-175. |
MLA | Sun, Zhengya,et al."Discriminative structure learning of sum-product networks for data stream classification".NEURAL NETWORKS 123(2020):163-175. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。