Assessing Brain Networks by Resting-State Dynamic Functional Connectivity: An fNIRS-EEG Study
文献类型:期刊论文
作者 | Zhang, Yujin1,3![]() |
刊名 | FRONTIERS IN NEUROSCIENCE
![]() |
出版日期 | 2020-01-24 |
卷号 | 13页码:12 |
关键词 | functional connectivity resting state dynamic functional near-infrared spectroscopy electroencephalogram |
DOI | 10.3389/fnins.2019.01430 |
通讯作者 | Zhu, Chaozhe(czzhu@bnu.edu.cn) |
英文摘要 | The coordination of brain activity between disparate neural populations is highly dynamic. Investigations into intrinsic brain organization by evaluating dynamic resting-state functional connectivity (dRSFC) have attracted great attention in recent years. However, there are few dRSFC studies based on functional near-infrared spectroscopy (fNIRS) even though it has some advantages for studying the temporal evolution of brain function. In this research, we recruited 20 young adults and measured their resting-state brain fluctuations in several areas of the frontal, parietal, temporal, and occipital lobes using fNIRS-electroencephalography (EEG) simultaneous recording. Based on a sliding-window approach, we found that the variability of the dRSFC within any region of interest was significantly lower than the connections between region of interests but noticeably greater than the correlation between the channels with a short interoptode distance, which mainly consist of physiological fluctuations occurring in the superficial layers. Furthermore, based on a time-resolved k-means clustering analysis, the temporal evolution was extracted for three dominant functional networks. These networks were roughly consistent between different subject subgroups and in varying sliding time window lengths of 20, 30, and 60 s. Between these three functional networks, there were obvious time-varied and system-specific synchronous relationships. In addition, the oscillation of the frontal-parietal-temporal network showed significant correlation with the switching of one EEG microstate, a finding which is consistent with a previous functional MRI-EEG study. All this evidence implies the functional significance of fNIRS-dRSFC and demonstrates the feasibility of fNIRS for extracting the dominant functional networks based on RSFC dynamics. |
WOS关键词 | SPATIOTEMPORAL DYNAMICS ; EYES OPEN ; VARIABILITY ; CONSCIOUSNESS ; FMRI |
资助项目 | National Key Research and Development Program of China[2017YFB1002502] ; National Natural Science Foundation of China[81871398] ; National Natural Science Foundation of China[61431002] ; Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning |
WOS研究方向 | Neurosciences & Neurology |
语种 | 英语 |
WOS记录号 | WOS:000512174700001 |
出版者 | FRONTIERS MEDIA SA |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China ; Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning |
源URL | [http://ir.ia.ac.cn/handle/173211/28626] ![]() |
专题 | 自动化研究所_类脑智能研究中心 |
通讯作者 | Zhu, Chaozhe |
作者单位 | 1.Chinese Acad Sci, Brainnetome Ctr, Inst Automat, Beijing, Peoples R China 2.Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Yujin,Zhu, Chaozhe. Assessing Brain Networks by Resting-State Dynamic Functional Connectivity: An fNIRS-EEG Study[J]. FRONTIERS IN NEUROSCIENCE,2020,13:12. |
APA | Zhang, Yujin,&Zhu, Chaozhe.(2020).Assessing Brain Networks by Resting-State Dynamic Functional Connectivity: An fNIRS-EEG Study.FRONTIERS IN NEUROSCIENCE,13,12. |
MLA | Zhang, Yujin,et al."Assessing Brain Networks by Resting-State Dynamic Functional Connectivity: An fNIRS-EEG Study".FRONTIERS IN NEUROSCIENCE 13(2020):12. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。