Simultaneous Segmentation and Classification of Mass Region From Mammograms Using a Mixed-Supervision Guided Deep Model
文献类型:期刊论文
作者 | Shen, Tianyu1,3![]() ![]() ![]() ![]() |
刊名 | IEEE SIGNAL PROCESSING LETTERS
![]() |
出版日期 | 2020 |
卷号 | 27页码:196-200 |
关键词 | Mixed-supervision deep learning segmentation and classification mammogram |
ISSN号 | 1070-9908 |
DOI | 10.1109/LSP.2019.2963151 |
通讯作者 | Gou, Chao(gouchao.cas@gmail.com) |
英文摘要 | Automatic diagnosis based on medical imaging necessitates both lesion segmentation and disease classification. Lesion segmentation requires pixel-level annotations while disease classification only requires image-level annotations. The two tasks are usually studied separately despite the latter problem relies on the former. Motivated by the close correlation between them, we propose a mixed-supervision guided method and a residual-aided classification U-Net model (ResCU-Net) for joint segmentation and benign-malignant classification. By coupling the strong supervision in the form of segmentation mask and weak supervision in the form of benign-malignant label through a simple annotation procedure, our method efficiently segments tumor regions while simultaneously predicting a discriminative map for identifying the benign-malignant types of tumors. Our network, ResCU-Net, extends U-Net by incorporating the residual module and the SegNet architecture to exploit multilevel information for achieving improved tissue identification. With experiments on a public mammogram database of INbreast, we validate the effectiveness of our method and achieve consistent improvements over state-of-the-art models. |
WOS关键词 | FEATURES ; NETWORK ; IMAGES |
资助项目 | National Natural Science Foundation of China[61806198] ; National Natural Science Foundation of China[61533019] |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:000511411900010 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/28628] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Gou, Chao |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 2.Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510275, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Shen, Tianyu,Gou, Chao,Wang, Jiangong,et al. Simultaneous Segmentation and Classification of Mass Region From Mammograms Using a Mixed-Supervision Guided Deep Model[J]. IEEE SIGNAL PROCESSING LETTERS,2020,27:196-200. |
APA | Shen, Tianyu,Gou, Chao,Wang, Jiangong,&Wang, Fei-Yue.(2020).Simultaneous Segmentation and Classification of Mass Region From Mammograms Using a Mixed-Supervision Guided Deep Model.IEEE SIGNAL PROCESSING LETTERS,27,196-200. |
MLA | Shen, Tianyu,et al."Simultaneous Segmentation and Classification of Mass Region From Mammograms Using a Mixed-Supervision Guided Deep Model".IEEE SIGNAL PROCESSING LETTERS 27(2020):196-200. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。