A hybrid many-objective cuckoo search algorithm
文献类型:期刊论文
作者 | Cui, Zhihua3; Zhang, Maoqing1; Wang, Hui4; Cai, Xingjuan3; Zhang, Wensheng2![]() |
刊名 | SOFT COMPUTING
![]() |
出版日期 | 2019-11-01 |
卷号 | 23期号:21页码:10681-10697 |
关键词 | Cuckoo search Many-objective optimization problems Non-dominated sorting Reference points |
ISSN号 | 1432-7643 |
DOI | 10.1007/s00500-019-04004-4 |
通讯作者 | Zhang, Maoqing(maoqing_zhang@163.com) ; Cai, Xingjuan(xingjuancai@163.com) |
英文摘要 | Cuckoo search (CS) is an excellent population-based algorithm and has shown promising performance in dealing with single- and multi-objective optimization problems. However, for many-objective optimization problems (MaOPs), CS cannot be directly employed. So far, few paper have been reported to use CS to solve MaOPs. In this paper, we try to propose a hybrid many-objective cuckoo search (HMaOCS) for MaOPs. In HMaOCS, the standard CS is firstly modified to effectively deal with MaOPs. Then, non-dominated sorting and the strategy of reference points are employed to ensure the convergence and diversity. In order to verify the performance of HMaOCS, DTLZ and WFG benchmark sets are utilized in the experiments. Experimental results show that HMaOCS can achieve promising performance compared with five other well-known many-objective optimization algorithms. |
WOS关键词 | MULTIOBJECTIVE EVOLUTIONARY ALGORITHM ; NONDOMINATED SORTING APPROACH ; OPTIMIZATION ALGORITHM ; GENETIC ALGORITHM ; FIREFLY ALGORITHM ; BAT ALGORITHM |
资助项目 | National Natural Science Foundation of China[61806138] ; National Natural Science Foundation of China[U1636220] ; National Natural Science Foundation of China[61663028] ; National Natural Science Foundation of China[71771176] ; National Natural Science Foundation of China[51775385] ; National Natural Science Foundation of China[61703279] ; National Natural Science Foundation of China[71371142] ; Natural Science Foundation of Shanxi Province[201801D121127] ; PhD Research Startup Foundation of Taiyuan University of Science and Technology[20182002] ; Distinguished Young Talents Plan of Jiang-xi Province[20171BCB23075] ; Natural Science Foundation of Jiang-xi Province[20171BAB202035] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000492901800008 |
出版者 | SPRINGER |
资助机构 | National Natural Science Foundation of China ; Natural Science Foundation of Shanxi Province ; PhD Research Startup Foundation of Taiyuan University of Science and Technology ; Distinguished Young Talents Plan of Jiang-xi Province ; Natural Science Foundation of Jiang-xi Province |
源URL | [http://ir.ia.ac.cn/handle/173211/28850] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | Zhang, Maoqing; Cai, Xingjuan |
作者单位 | 1.Tongji Univ, Sch Elect & Informat, Shanghai 201804, Peoples R China 2.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 3.Taiyuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan 030024, Shanxi, Peoples R China 4.Nanchang Inst Technol, Sch Informat Engn, Nanchang 330099, Jiangxi, Peoples R China |
推荐引用方式 GB/T 7714 | Cui, Zhihua,Zhang, Maoqing,Wang, Hui,et al. A hybrid many-objective cuckoo search algorithm[J]. SOFT COMPUTING,2019,23(21):10681-10697. |
APA | Cui, Zhihua,Zhang, Maoqing,Wang, Hui,Cai, Xingjuan,&Zhang, Wensheng.(2019).A hybrid many-objective cuckoo search algorithm.SOFT COMPUTING,23(21),10681-10697. |
MLA | Cui, Zhihua,et al."A hybrid many-objective cuckoo search algorithm".SOFT COMPUTING 23.21(2019):10681-10697. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。