中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
APLNet: Attention-enhanced progressive learning network

文献类型:期刊论文

作者Zhang, Hui1; Kang, Danqing1; He, Haibo4; Wang, Fei-Yue1,2,3
刊名NEUROCOMPUTING
出版日期2020-01-02
卷号371页码:166-176
关键词Object detection Progressive learning Attention enhancement
ISSN号0925-2312
DOI10.1016/j.neucom.2019.08.086
通讯作者He, Haibo(haibohe@uri.edu)
英文摘要Single-stage detectors depend on a simple regression network to predict category scores and regress box offsets for a fixed set of default boxes directly. The regression network needs to have high generalization capability, so as to accurately model the relationship between various object shapes and default boxes. Instead of complicating the regression network to increase generalization capability, we iteratively refine the default boxes to model this relationship sequentially. In this paper, we propose an Attention-Enhanced Progressive Learning Network (APLNet), which employs multiple stages for progressive detection to improve performance of single-stage detectors. Specifically, a progressive learning module is proposed to iteratively update the feature representation space and gradually regress the default boxes, which are pushed closer to the target objects progressively. In addition, since low-level features have less semantic information about objects, we design an attention enhancement module to generate the attention map applied to inject more semantically meaningful information into the low-level features. This module is supervised by boxes-induced segmentation annotations, i.e., no extra segmentation annotations are required. The multi-task loss function is used to train the whole network in an end-to-end way. Extensive experiments on PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO datasets demonstrate the effectiveness of the proposed APLNet. (C) 2019 Elsevier B.V. All rights reserved.
WOS关键词OBJECT DETECTION
资助项目Joint Foundation of Guangdong[U1811463]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000493950600015
出版者ELSEVIER
资助机构Joint Foundation of Guangdong
源URL[http://ir.ia.ac.cn/handle/173211/28870]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
通讯作者He, Haibo
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
2.Macau Univ Sci & Technol, Inst Syst Engn, Macau, Peoples R China
3.Qingdao Acad Intelligent Ind, Innovat Ctr Parallel Vis, Qingdao, Shandong, Peoples R China
4.Univ Rhode Isl, Dept Elect Comp & Biomed Engn, Kingston, RI 02881 USA
推荐引用方式
GB/T 7714
Zhang, Hui,Kang, Danqing,He, Haibo,et al. APLNet: Attention-enhanced progressive learning network[J]. NEUROCOMPUTING,2020,371:166-176.
APA Zhang, Hui,Kang, Danqing,He, Haibo,&Wang, Fei-Yue.(2020).APLNet: Attention-enhanced progressive learning network.NEUROCOMPUTING,371,166-176.
MLA Zhang, Hui,et al."APLNet: Attention-enhanced progressive learning network".NEUROCOMPUTING 371(2020):166-176.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。