ParallelEye-CS: A New Dataset of Synthetic Images for Testing the Visual Intelligence of Intelligent Vehicles
文献类型:期刊论文
作者 | Li, Xuan1,4; Wang, Yutong3,4![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
![]() |
出版日期 | 2019-10-01 |
卷号 | 68期号:10页码:9619-9631 |
关键词 | Testing Intelligent vehicles Task analysis Object detection Automation Roads Visual perception Intelligent vehicles visual intelligence intelligence testing object detection virtual simulation synthetic images |
ISSN号 | 0018-9545 |
DOI | 10.1109/TVT.2019.2936227 |
通讯作者 | Wang, Kunfeng(kunfengwang@gmail.com) |
英文摘要 | Virtual simulation testing is becoming indispensable for the intelligence testing of intelligent vehicles. However, even the most advanced simulation software provides rather limited test conditions. In the long run, intelligent vehicles are expected to work at SAE (Society of Automotive Engineers) level 4 or level 5. Researchers should make full use of virtual simulation scenarios to test the visual intelligence algorithms of intelligent vehicles under various imaging conditions. In this paper, we create realistic artificial scenes to simulate the self-driving scenarios, and collect a dataset of synthetic images from the virtual driving scenes, named ParallelEye-CS. In the artificial scenes, we can flexibly change environmental conditions and automatically acquire accurate and diverse ground-truth labels. As a result, ParallelEye-CS has six ground-truth labels and includes twenty types of tests, which are divided into normal, environmental, and difficult tasks. Furthermore, we utilize ParallelEye-CS in combination with other publicly available datasets to conduct experiments for visual object detection. The experimental results indicate that: 1) object detection algorithms of intelligent vehicles can be tested under various scenario challenges; 2) mixed dataset can improve the accuracy of object detection algorithms, but domain shift is a serious issue worthy of attention. |
WOS关键词 | VISION ; LESSONS |
资助项目 | National Key R&D Program of China[2018YFC1704400] ; National Natural Science Foundation of China[U1811463] ; China Scholarship Council |
WOS研究方向 | Engineering ; Telecommunications ; Transportation |
语种 | 英语 |
WOS记录号 | WOS:000501349900024 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Key R&D Program of China ; National Natural Science Foundation of China ; China Scholarship Council |
源URL | [http://ir.ia.ac.cn/handle/173211/29417] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Wang, Kunfeng |
作者单位 | 1.Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China 2.Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Xuan,Wang, Yutong,Yan, Lan,et al. ParallelEye-CS: A New Dataset of Synthetic Images for Testing the Visual Intelligence of Intelligent Vehicles[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2019,68(10):9619-9631. |
APA | Li, Xuan,Wang, Yutong,Yan, Lan,Wang, Kunfeng,Deng, Fang,&Wang, Fei-Yue.(2019).ParallelEye-CS: A New Dataset of Synthetic Images for Testing the Visual Intelligence of Intelligent Vehicles.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,68(10),9619-9631. |
MLA | Li, Xuan,et al."ParallelEye-CS: A New Dataset of Synthetic Images for Testing the Visual Intelligence of Intelligent Vehicles".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 68.10(2019):9619-9631. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。