中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ParallelEye-CS: A New Dataset of Synthetic Images for Testing the Visual Intelligence of Intelligent Vehicles

文献类型:期刊论文

作者Li, Xuan1,4; Wang, Yutong3,4; Yan, Lan3,4; Wang, Kunfeng2,4; Deng, Fang1; Wang, Fei-Yue4
刊名IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
出版日期2019-10-01
卷号68期号:10页码:9619-9631
关键词Testing Intelligent vehicles Task analysis Object detection Automation Roads Visual perception Intelligent vehicles visual intelligence intelligence testing object detection virtual simulation synthetic images
ISSN号0018-9545
DOI10.1109/TVT.2019.2936227
通讯作者Wang, Kunfeng(kunfengwang@gmail.com)
英文摘要Virtual simulation testing is becoming indispensable for the intelligence testing of intelligent vehicles. However, even the most advanced simulation software provides rather limited test conditions. In the long run, intelligent vehicles are expected to work at SAE (Society of Automotive Engineers) level 4 or level 5. Researchers should make full use of virtual simulation scenarios to test the visual intelligence algorithms of intelligent vehicles under various imaging conditions. In this paper, we create realistic artificial scenes to simulate the self-driving scenarios, and collect a dataset of synthetic images from the virtual driving scenes, named ParallelEye-CS. In the artificial scenes, we can flexibly change environmental conditions and automatically acquire accurate and diverse ground-truth labels. As a result, ParallelEye-CS has six ground-truth labels and includes twenty types of tests, which are divided into normal, environmental, and difficult tasks. Furthermore, we utilize ParallelEye-CS in combination with other publicly available datasets to conduct experiments for visual object detection. The experimental results indicate that: 1) object detection algorithms of intelligent vehicles can be tested under various scenario challenges; 2) mixed dataset can improve the accuracy of object detection algorithms, but domain shift is a serious issue worthy of attention.
WOS关键词VISION ; LESSONS
资助项目National Key R&D Program of China[2018YFC1704400] ; National Natural Science Foundation of China[U1811463] ; China Scholarship Council
WOS研究方向Engineering ; Telecommunications ; Transportation
语种英语
WOS记录号WOS:000501349900024
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key R&D Program of China ; National Natural Science Foundation of China ; China Scholarship Council
源URL[http://ir.ia.ac.cn/handle/173211/29417]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
通讯作者Wang, Kunfeng
作者单位1.Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
2.Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Xuan,Wang, Yutong,Yan, Lan,et al. ParallelEye-CS: A New Dataset of Synthetic Images for Testing the Visual Intelligence of Intelligent Vehicles[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2019,68(10):9619-9631.
APA Li, Xuan,Wang, Yutong,Yan, Lan,Wang, Kunfeng,Deng, Fang,&Wang, Fei-Yue.(2019).ParallelEye-CS: A New Dataset of Synthetic Images for Testing the Visual Intelligence of Intelligent Vehicles.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,68(10),9619-9631.
MLA Li, Xuan,et al."ParallelEye-CS: A New Dataset of Synthetic Images for Testing the Visual Intelligence of Intelligent Vehicles".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 68.10(2019):9619-9631.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。