中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Structural block driven enhanced convolutional neural representation for relation extraction

文献类型:期刊论文

作者Wang, Dongsheng1; Tiwari, Prayag5; Garg, Sahil4; Zhu, Hongyin3; Bruza, Peter2
刊名APPLIED SOFT COMPUTING
出版日期2020
卷号86页码:9
关键词Relation extraction Deep learning CNNs Dependency parsing
ISSN号1568-4946
DOI10.1016/j.asoc.2019.105913
通讯作者Tiwari, Prayag(prayag.tiwari@dei.unipd.it)
英文摘要In this paper, we propose a novel lightweight relation extraction approach of structural block driven convolutional neural learning. Specifically, we detect the essential sequential tokens associated with entities through dependency analysis, named as a structural block, and only encode the block on a block-wise and an inter-block-wise representation, utilizing multi-scale Convolutional Neural Networks (CNNs). This is to (1) eliminate the noisy from irrelevant part of a sentence; meanwhile (2) enhance the relevant block representation with both block-wise and inter-block-wise semantically enriched representation. Our method has the advantage of being independent of long sentence context since we only encode the sequential tokens within a block boundary. Experiments on two datasets i.e., SemEval2010 and KBP37, demonstrate the significant advantages of our method. In particular, we achieve the new state-of-the-art performance on the KBP37 dataset; and comparable performance with the state-of-the-art on the SemEval2010 dataset. (C) 2019 Elsevier B.V. All rights reserved.
WOS关键词ANOMALY DETECTION
资助项目European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant[721321]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000503388200064
出版者ELSEVIER
资助机构European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant
源URL[http://ir.ia.ac.cn/handle/173211/29451]  
专题类脑智能研究中心_类脑认知计算
通讯作者Tiwari, Prayag
作者单位1.Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
2.Queensland Univ Technol, Sch Informat Syst, 2 George St, Brisbane, Qld 4000, Australia
3.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
4.Ecole Technol Super, Montreal, PQ H3C 1K3, Canada
5.Univ Padua, Dept Informat Engn, Padua, Italy
推荐引用方式
GB/T 7714
Wang, Dongsheng,Tiwari, Prayag,Garg, Sahil,et al. Structural block driven enhanced convolutional neural representation for relation extraction[J]. APPLIED SOFT COMPUTING,2020,86:9.
APA Wang, Dongsheng,Tiwari, Prayag,Garg, Sahil,Zhu, Hongyin,&Bruza, Peter.(2020).Structural block driven enhanced convolutional neural representation for relation extraction.APPLIED SOFT COMPUTING,86,9.
MLA Wang, Dongsheng,et al."Structural block driven enhanced convolutional neural representation for relation extraction".APPLIED SOFT COMPUTING 86(2020):9.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。