Frame-GAN: Increasing the frame rate of gait videos with generative adversarial networks
文献类型:期刊论文
作者 | Xue, Wei1,3![]() ![]() ![]() ![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2020-03-07 |
卷号 | 380页码:95-104 |
关键词 | Gait recognition Generative adversarial networks Metric learning Deep learning |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2019.11.015 |
通讯作者 | Ai, Hong(aihong@hrbust.edu.cn) |
英文摘要 | Most existing methods of identifying person except gait recognition require the cooperation of the subjects. Aiming at detecting the pattern of human walking movement, gait recognition takes advantage of the time-serial data and can identify a person distantly. The time-serial data, which is usually presented in video form, always has a limitation in frame rate, which intrinsically affects the performance of the recognition models. In order to increase the frame rate of gait videos, we propose a new kind of generative adversarial networks (GAN) named Frame-GAN to reduce the gap between adjacent frames. Inspired by the recent advances in metric learning, we also propose a new effective loss function named Margin Ratio Loss (MRL) to boost the recognition model. We evaluate the proposed method on the challenging CASIA-B and OU-ISIR gait databases. Extensive experimental results show that the proposed Frame-GAN and MRL are effective. (C) 2019 Elsevier B.V. All rights reserved. |
WOS关键词 | RECOGNITION ; IMAGE |
资助项目 | National Key Research and Development Program of China[2016YFB1001000] ; National Natural Science Foundation of China[61525306] ; National Natural Science Foundation of China[61633021] ; National Natural Science Foundation of China[61721004] ; National Natural Science Foundation of China[61420106015] ; National Natural Science Foundation of China[61806194] ; Capital Science and Technology Leading Talent Training Project[Z181100006318030] ; Beijing Science and Technology Project[Z181100008918010] ; NVIDIA ; NVIDIA DGX-1 AI Supercomputer ; CAS-AIR |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000507986500010 |
出版者 | ELSEVIER |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China ; Capital Science and Technology Leading Talent Training Project ; Beijing Science and Technology Project ; NVIDIA ; NVIDIA DGX-1 AI Supercomputer ; CAS-AIR |
源URL | [http://ir.ia.ac.cn/handle/173211/29541] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | Ai, Hong |
作者单位 | 1.Chinese Acad Sci CASIA, CRIPAC, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing 100190, Peoples R China 2.UCAS, Beijing 100190, Peoples R China 3.Harbin Univ Sci & Technol, Sch Automat, Harbin 150001, Peoples R China |
推荐引用方式 GB/T 7714 | Xue, Wei,Ai, Hong,Sun, Tianyu,et al. Frame-GAN: Increasing the frame rate of gait videos with generative adversarial networks[J]. NEUROCOMPUTING,2020,380:95-104. |
APA | Xue, Wei,Ai, Hong,Sun, Tianyu,Song, Chunfeng,Huang, Yan,&Wang, Liang.(2020).Frame-GAN: Increasing the frame rate of gait videos with generative adversarial networks.NEUROCOMPUTING,380,95-104. |
MLA | Xue, Wei,et al."Frame-GAN: Increasing the frame rate of gait videos with generative adversarial networks".NEUROCOMPUTING 380(2020):95-104. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。