中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Procedural Learning With Robust Visual Features via Low Rank Prior

文献类型:期刊论文

作者Li, Haifeng1,5; Chen, Li1; Ding, Hailun6; Li, Qi2; Sun, Bingyu3; Wu, Guohua4
刊名IEEE ACCESS
出版日期2019
卷号7期号:页码:18884-18893
关键词Low-rank approximation procedural learning knowledge transfer robustness visual feature sparse
ISSN号2169-3536
DOI10.1109/ACCESS.2019.2894841
英文摘要

In order to apply a convolutional neural network (CNN) to unseen datasets, a common way is to train a CNN using a pre-trained model on a big dataset by fine-tuning it instead of starting from scratch. How to control the fine-tuning progress to get the desired properties is still a challenging problem. Our key observation is that the visual features of the pre-trained model have rich information and can be explored during the training process. A natural thought is to employ these features and design a control strategy to improve the performance of the transfer learning process. In this paper, a procedural learning framework using the learned low-rank component of the visual features both in the pre-trained model and the training process is proposed to improve the accuracy and generalizability of the CNN. In this framework, we presented an approach to yield independent visualization features (IVFs). We found via robust independent component analysis that the low-rank components of IVFs provided robust features for our framework. Then, we design a Wasserstein regularization to control the transportation of the distribution of IVFs from a pre-trained model to a final model via the Wasserstein distance. The experiments on the Cifar-10 and Cifar-100 datasets via a VGG-style CNN model showed that our method effectively improves the classification results and convergence speed. The basic idea is that exploring visual features can also potentially inspire other topics, such as image detection and reinforcement learning.

WOS关键词ALGORITHM
资助项目National Science Foundation of China[41571397] ; National Science Foundation of China[41501442] ; National Science Foundation of China[51778242] ; National Science Foundation of China[61773360] ; National Science Foundation of China[41871364] ; Natural Science Foundation of Hunan Province[2016JJ3144] ; Natural Science Foundation of Hunan Province[2016JJ2006]
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000459612400001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; National Science Foundation of China ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province ; Natural Science Foundation of Hunan Province
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/42151]  
专题合肥物质科学研究院_中科院固体物理研究所
通讯作者Wu, Guohua
作者单位1.Cent S Univ, Sch Geosci & Infophys, Changsha, Hunan, Peoples R China
2.Cent S Univ, Sch Informat Sci & Engn, Changsha, Hunan, Peoples R China
3.Chinese Acad Sci, Inst Intelligent Machine, Hefei, Anhui, Peoples R China
4.Cent S Univ, Sch Traff & Transportat Engn, Changsha, Hunan, Peoples R China
5.Henan Lab Spatial Informat Applicat Ecol Environm, Zhengzhou, Henan, Peoples R China
6.Cent S Univ, Sch Software, Changsha, Hunan, Peoples R China
推荐引用方式
GB/T 7714
Li, Haifeng,Chen, Li,Ding, Hailun,et al. Procedural Learning With Robust Visual Features via Low Rank Prior[J]. IEEE ACCESS,2019,7(无):18884-18893.
APA Li, Haifeng,Chen, Li,Ding, Hailun,Li, Qi,Sun, Bingyu,&Wu, Guohua.(2019).Procedural Learning With Robust Visual Features via Low Rank Prior.IEEE ACCESS,7(无),18884-18893.
MLA Li, Haifeng,et al."Procedural Learning With Robust Visual Features via Low Rank Prior".IEEE ACCESS 7.无(2019):18884-18893.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。