中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep voice-visual cross-modal retrieval with deep feature similarity learning

文献类型:会议论文

作者Chen, Yaxiong1,2; Lu, Xiaoqiang1; Feng, Yachuang1
出版日期2019
会议日期2019-11-08
会议地点Xi'an, China
关键词Cross-modal retrieval Deep hashing Deep feature similarity
卷号11859 LNCS
DOI10.1007/978-3-030-31726-3_39
页码454-465
英文摘要

Thanks to the development of deep learning, voice-visual cross-modal retrieval has made remarkable progress in recent years. However, there still exist some bottlenecks: How to establish effective correlation between voices and images to improve the retrieval precision and how to reduce data storage and speed up retrieval in large-scale crossmodal data. In this paper, we propose a novel Voice-Visual Cross-Modal Hashing (V2CMH) method, which can generate hash codes with low storage memory and fast retrieval properties. Specially, the proposed V2CMH method can leverage deep feature similarity to establish the semantic relationship between voices and images. In addition, for hash codes learning, our method attempts to preserve the semantic similarity of binary codes and reduce the information loss of binary codes generation. Experiments illustrate that V2CMH algorithm can achieve better retrieval performance than other state-of-the-art cross-modal retrieval algorithms. © Springer Nature Switzerland AG 2019.

产权排序1
会议录Pattern Recognition and Computer Vision- 2nd Chinese Conference, PRCV 2019, Proceedings, Part III
会议录出版者Springer
语种英语
ISSN号03029743;16113349
ISBN号9783030317256
源URL[http://ir.opt.ac.cn/handle/181661/93551]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Lu, Xiaoqiang
作者单位1.The Key Laboratory of Spectral Imaging Technology CAS, Xian Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xian; 710119, China;
2.University of Chinese Academy of Sciences, Beijing; 100049, China
推荐引用方式
GB/T 7714
Chen, Yaxiong,Lu, Xiaoqiang,Feng, Yachuang. Deep voice-visual cross-modal retrieval with deep feature similarity learning[C]. 见:. Xi'an, China. 2019-11-08.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。