Improving the Environmental Compatibility of Marine Sensors by Surface Functionalization with Graphene Oxide
文献类型:期刊论文
作者 | Jiang, TJ![]() ![]() |
刊名 | ANALYTICAL CHEMISTRY
![]() |
出版日期 | 2019-10-15 |
卷号 | 91期号:20页码:13268-13274 |
关键词 | THIN-FILM COMPOSITE ION-SELECTIVE ELECTRODES IN-SITU CHEMICAL SENSORS BLOOD COMPATIBILITY FOULING CONTROL OXYGEN SENSORS MEMBRANE BIOCOMPATIBILITY CARBON |
ISSN号 | 0003-2700 |
DOI | 10.1021/acs.analchem.9b03974 |
产权排序 | [Jiang, Tianjia ; Qi, Longbin ; Qin, Wei] Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Shandong, Peoples R China ; [Jiang, Tianjia ; Qi, Longbin ; Qin, Wei] Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, Shandong Key Lab Coastal Environm Proc, Yantai 264003, Shandong, Peoples R China ; [Qin, Wei] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Biol & Biotechnol, Qingdao 266237, Shandong, Peoples R China ; [Qi, Longbin] Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
文献子类 | Article |
英文摘要 | Improving the durability relating to biofouling resistance is still a major challenge for sensors applied in marine monitoring. Herein, a novel antifouling approach implementing biofouling resistance without compromising the sensor's performance is proposed. A polymeric membrane calcium ionselective electrode (Ca2+-ISE) is chosen as a model sensor. An antifouling coating based on graphene oxide (GO) can be formed on the sensor's surface via the layer-by-layer technique in a simple and controllable manner. The GO coating works as a protection layer to impede the settlement of marine bacterial cells on the sensor surface due to its dual functionality of both antiadhesive and antimicrobial properties. The assembly of the GO coating does not influence the sensor's performance in terms of linear range and response slope. The biofouling resistance of the proposed sensor to marine bacterial cells is evaluated by using the colony-forming unit (CFU) counting method and confocal laser scanning microscopy analysis. An improved antimicrobial activity and a significant decrease in the adsorption of bacterial cells are observed for the GO-coated Ca2+-ISE. Moreover, negligible change is observed in the analysis performance of the GO-coated Ca2+-ISE after 7 day exposure to a rather high concentration marine bacterial suspension of similar to 10(9) CFU mL(-1). This work provides an efficient strategy of developing GO-based antifouling coatings to improve the environmental compatibility of marine sensors. |
WOS关键词 | THIN-FILM COMPOSITE ; ION-SELECTIVE ELECTRODES ; IN-SITU ; CHEMICAL SENSORS ; BLOOD COMPATIBILITY ; FOULING CONTROL ; OXYGEN SENSORS ; MEMBRANE ; BIOCOMPATIBILITY ; CARBON |
WOS研究方向 | Chemistry, Analytical |
语种 | 英语 |
WOS记录号 | WOS:000491219900085 |
资助机构 | National Key Research and Development Program of China [2016YFC1400700] ; National Science Foundation of ChinaNational Natural Science Foundation of China [41806119, 21677172] ; Science Foundation of Shandong ProvinceNatural Science Foundation of Shandong Province [ZR2018BB053] ; Taishan Scholar Program of Shandong Province [tspd20181215] |
源URL | [http://ir.yic.ac.cn/handle/133337/24832] ![]() |
专题 | 烟台海岸带研究所_近岸生态与环境实验室 烟台海岸带研究所_中科院海岸带环境过程与生态修复重点实验室 |
作者单位 | 1.Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Shandong, Peoples R China; 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Qingdao Natl Lab Marine Sci & Technol, Lab Marine Biol & Biotechnol, Qingdao 266237, Shandong, Peoples R China; 4.Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, Shandong Key Lab Coastal Environm Proc, Yantai 264003, Shandong, Peoples R China; |
推荐引用方式 GB/T 7714 | Jiang, TJ,Qi, LB,Qin, W. Improving the Environmental Compatibility of Marine Sensors by Surface Functionalization with Graphene Oxide[J]. ANALYTICAL CHEMISTRY,2019,91(20):13268-13274. |
APA | Jiang, TJ,Qi, LB,&Qin, W.(2019).Improving the Environmental Compatibility of Marine Sensors by Surface Functionalization with Graphene Oxide.ANALYTICAL CHEMISTRY,91(20),13268-13274. |
MLA | Jiang, TJ,et al."Improving the Environmental Compatibility of Marine Sensors by Surface Functionalization with Graphene Oxide".ANALYTICAL CHEMISTRY 91.20(2019):13268-13274. |
入库方式: OAI收割
来源:烟台海岸带研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。