UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking
文献类型:期刊论文
作者 | Wen, Longyin2; Du, Dawei1; Cai, Zhaowei7; Lei, Zhen6![]() |
刊名 | COMPUTER VISION AND IMAGE UNDERSTANDING
![]() |
出版日期 | 2020-04-01 |
卷号 | 193页码:20 |
关键词 | Object detection Object tracking Benchmark Evaluation protocol |
ISSN号 | 1077-3142 |
DOI | 10.1016/j.cviu.2020.102907 |
通讯作者 | Lyu, Siwei(slyu@albany.edu) |
英文摘要 | Effective multi-object tracking (MOT) methods have been developed in recent years for a wide range of applications including visual surveillance and behavior understanding. Existing performance evaluations of MOT methods usually separate the tracking step from the detection step by using one single predefined setting of object detection for comparisons. In this work, we propose a new University at Albany DEtection and TRACking (UA-DETRAC) dataset for comprehensive performance evaluation of MOT systems especially on detectors. The UA-DETRAC benchmark dataset consists of 100 challenging videos captured from real-world traffic scenes (over 140,000 frames with rich annotations, including illumination, vehicle type, occlusion, truncation ratio, and vehicle bounding boxes) for multi-object detection and tracking. We evaluate complete MOT systems constructed from combinations of state-of-the-art object detection and tracking methods. Our analysis shows the complex effects of detection accuracy on MOT system performance. Based on these observations, we propose effective and informative evaluation metrics for MOT systems that consider the effect of object detection for comprehensive performance analysis. |
WOS关键词 | MULTITARGET TRACKING ; ROBUST ; APPEARANCE ; HISTOGRAMS |
资助项目 | US Natural Science Foundation[IIS1816227] ; National Nature Science Foundation of China[61472388] ; National Nature Science Foundation of China[61771341] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000518876100004 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
资助机构 | US Natural Science Foundation ; National Nature Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/38603] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心 |
通讯作者 | Lyu, Siwei |
作者单位 | 1.SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA 2.JD Finance Amer Corp, Mountain View, CA USA 3.Univ Calif Merced, Sch Engn, Merced, CA USA 4.Hanyang Univ, Div Comp Sci & Engn, Seoul, South Korea 5.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China 6.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China 7.Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92103 USA |
推荐引用方式 GB/T 7714 | Wen, Longyin,Du, Dawei,Cai, Zhaowei,et al. UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,2020,193:20. |
APA | Wen, Longyin.,Du, Dawei.,Cai, Zhaowei.,Lei, Zhen.,Chang, Ming-Ching.,...&Lyu, Siwei.(2020).UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking.COMPUTER VISION AND IMAGE UNDERSTANDING,193,20. |
MLA | Wen, Longyin,et al."UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking".COMPUTER VISION AND IMAGE UNDERSTANDING 193(2020):20. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。