中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Improved value iteration for neural-network-based stochastic optimal control design

文献类型:期刊论文

作者Liang, Mingming2; Wang, Ding1,3; Liu, Derong4
刊名NEURAL NETWORKS
出版日期2020-04-01
卷号124页码:280-295
关键词Adaptive critic designs Adaptive dynamic programming Neural networks Optimal control Stochastic processes Value iteration
ISSN号0893-6080
DOI10.1016/j.neunet.2020.01.004
通讯作者Wang, Ding(dingwang@bjut.edu.cn)
英文摘要In this paper, a novel value iteration adaptive dynamic programming (ADP) algorithm is presented, which is called an improved value iteration ADP algorithm, to obtain the optimal policy for discrete stochastic processes. In the improved value iteration ADP algorithm, for the first time we propose a new criteria to verify whether the obtained policy is stable or not for stochastic processes. By analyzing the convergence properties of the proposed algorithm, it is shown that the iterative value functions can converge to the optimum. In addition, our algorithm allows the initial value function to be an arbitrary positive semi-definite function. Finally, two simulation examples are presented to validate the effectiveness of the developed method. (C) 2020 Elsevier Ltd. All rights reserved.
WOS关键词ALGORITHMS
资助项目Beijing Natural Science Foundation, China[JQ19013] ; National Natural Science Foundation of China[61773373] ; National Natural Science Foundation of China[61533017] ; Youth Innovation Promotion Association of the Chinese Academy of Sciences
WOS研究方向Computer Science ; Neurosciences & Neurology
语种英语
WOS记录号WOS:000518860600025
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构Beijing Natural Science Foundation, China ; National Natural Science Foundation of China ; Youth Innovation Promotion Association of the Chinese Academy of Sciences
源URL[http://ir.ia.ac.cn/handle/173211/38630]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_智能化团队
通讯作者Wang, Ding
作者单位1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
3.Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
4.Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
推荐引用方式
GB/T 7714
Liang, Mingming,Wang, Ding,Liu, Derong. Improved value iteration for neural-network-based stochastic optimal control design[J]. NEURAL NETWORKS,2020,124:280-295.
APA Liang, Mingming,Wang, Ding,&Liu, Derong.(2020).Improved value iteration for neural-network-based stochastic optimal control design.NEURAL NETWORKS,124,280-295.
MLA Liang, Mingming,et al."Improved value iteration for neural-network-based stochastic optimal control design".NEURAL NETWORKS 124(2020):280-295.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。