中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Brain-Inspired Visual Fear Responses Model for UAV Emergent Obstacle Dodging

文献类型:期刊论文

作者Zhao, Feifei1; Kong, Qingqun2,3; Zeng, Yi2; Xu, Bo2,4,5
刊名IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS
出版日期2020-03-01
卷号12期号:1页码:124-132
关键词Unmanned ariel vehicle (UAV) dodging emergent obstacles visual fear responses pathway
ISSN号2379-8920
DOI10.1109/TCDS.2019.2939024
通讯作者Zeng, Yi(yi.zeng@ia.ac.cn)
英文摘要Dodging emergent dangers is an innate cognitive ability for animals, which helps them to survive in the natural environment. The retina-superior colliculus (SC)-pulvinar-amygdala-periaqueductal gray pathway is responsible for the visual fear responses, and it is able to quickly detect the looming obstacles for innate dodging. Inspired by the mechanism of the visual fear responses pathway, we propose a brain-inspired emergent obstacle dodging method to model the functions of the related brain regions. This method first detects the moving direction and speed of the salient point of moving objects (retina). Then, we detect the looming obstacles (SC). Third, we modulate attention to the most dangerous area (pulvinar). Fourth, if the degree of danger exceeds the threshold (amygdala), the unmanned ariel vehicle (UAV) moves back to dodge it (periaqueductal gray). Two types of experiments are conducted to validate the effectiveness of the proposed model. In a simulated scene, we simulate the process of mice's fear responses by putting looming dark lights shining on them. In a natural scene, we apply the proposed model to the UAV emergent obstacles dodging. Compared to the stereo vision model, the proposed model is not only more biologically realistic from the mechanisms perspective, but also more accurate and faster for computation.
WOS关键词SUPERIOR COLLICULUS ; PERIAQUEDUCTAL GRAY ; LOOMING OBJECTS ; DIRECTION SELECTIVITY ; NEURAL-NETWORK ; AMYGDALA ; NEURONS ; PATHWAY ; COLLISION ; CORTEX
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDB32070100] ; Beijing Municipal Commission of Science and Technology[Z181100001518006] ; CETC Joint Fund[6141B08010103] ; Major Research Program of Shandong Province[2018CXGC1503]
WOS研究方向Computer Science ; Robotics ; Neurosciences & Neurology
语种英语
WOS记录号WOS:000521175700012
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构Strategic Priority Research Program of the Chinese Academy of Sciences ; Beijing Municipal Commission of Science and Technology ; CETC Joint Fund ; Major Research Program of Shandong Province
源URL[http://ir.ia.ac.cn/handle/173211/38725]  
专题类脑智能研究中心_类脑认知计算
自动化研究所_类脑智能研究中心
通讯作者Zeng, Yi
作者单位1.Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Feifei,Kong, Qingqun,Zeng, Yi,et al. A Brain-Inspired Visual Fear Responses Model for UAV Emergent Obstacle Dodging[J]. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS,2020,12(1):124-132.
APA Zhao, Feifei,Kong, Qingqun,Zeng, Yi,&Xu, Bo.(2020).A Brain-Inspired Visual Fear Responses Model for UAV Emergent Obstacle Dodging.IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS,12(1),124-132.
MLA Zhao, Feifei,et al."A Brain-Inspired Visual Fear Responses Model for UAV Emergent Obstacle Dodging".IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 12.1(2020):124-132.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。