中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning to Generate Radar Image Sequences Using Two-Stage Generative Adversarial Networks

文献类型:期刊论文

作者Zhang, Chenyang1,2; Yang, Xuebing1; Tang, Yongqiang1,2; Zhang, Wensheng1
刊名IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
出版日期2020-03-01
卷号17期号:3页码:401-405
关键词Deep learning extreme precipitation generative adversarial networks (GANs) radar image sequences
ISSN号1545-598X
DOI10.1109/LGRS.2019.2922326
通讯作者Zhang, Wensheng(zhangwenshengia@hotmail.com)
英文摘要While quantitative precipitation estimation (QPE) using weather radar is widely adopted in operation, precipitation data sets are often highly imbalanced. In particular, extreme precipitation usually lacks representation, which may introduce the bottleneck for radar QPE with machine learning models. Discovering the intrinsic characteristic of extreme precipitation with few samples is challenging. In this letter, we focus on the radar reflectivity data and aim to generate synthetic radar image sequences with respect to extreme precipitation. Considering the relatively long interval between continuous radar images due to radar volume scan, traditional methods in video generation are not suitable. In this letter, we propose Two-stage Generative Adversarial Networks (TsGANs) to address the above-mentioned problem. In general, our TsGAN constructs adversarial process between generators and discriminators: the generator produces samples similar to real data, while the discriminator determines whether or not a sample is eligible. In Stage I, we generate an image sequence containing content and motion features. In Stage II, we design an enhanced net structure to enrich the adversarial processes and further improve the motion features. Experimental testing is performed within the radar coverage in Shenzhen, China, on rainfall events in 2014-2016. Results show that our TsGAN is superior to previous works.
资助项目National Natural Science Foundation of China[U1636220] ; National Natural Science Foundation of China[61602482] ; National Natural Science Foundation of China[61532006]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000521960200008
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/38731]  
专题精密感知与控制研究中心_人工智能与机器学习
自动化研究所_精密感知与控制研究中心
通讯作者Zhang, Wensheng
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Chenyang,Yang, Xuebing,Tang, Yongqiang,et al. Learning to Generate Radar Image Sequences Using Two-Stage Generative Adversarial Networks[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2020,17(3):401-405.
APA Zhang, Chenyang,Yang, Xuebing,Tang, Yongqiang,&Zhang, Wensheng.(2020).Learning to Generate Radar Image Sequences Using Two-Stage Generative Adversarial Networks.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,17(3),401-405.
MLA Zhang, Chenyang,et al."Learning to Generate Radar Image Sequences Using Two-Stage Generative Adversarial Networks".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 17.3(2020):401-405.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。