Context propagation embedding network for weakly supervised semantic segmentation
文献类型:期刊论文
作者 | Xu, Yajun2; Mao, Zhendong3; Chen, Zhineng1![]() |
刊名 | MULTIMEDIA TOOLS AND APPLICATIONS
![]() |
出版日期 | 2020-03-30 |
页码 | 18 |
关键词 | Weakly supervised Semantic segmentation Context propagation High-quality visual cues |
ISSN号 | 1380-7501 |
DOI | 10.1007/s11042-020-08787-9 |
通讯作者 | Mao, Zhendong(maozhendong2008@gmail.com) |
英文摘要 | Weakly-supervised semantic segmentation with image-level labels has much significance as it facilitates related practical applications under lightweight manual annotations. Recent researches first infer the visual cues, referred as discriminative regions corresponding to each object category on images using deep convolutional classification networks. Then they expand visual cues to generate initial segmentation masks. Despite the remarkable progress, the segmentation performance still remains unsatisfactory due to the absence of complete visual cues. Using these low-quality visual cues as prior will have the limitation on improving segmentation performance. To overcome this problem, we propose a novel context propagation embedding network, i.e., the CPENet to generate high-quality visual cues, which focuses on learning semantic relationship between each region and its surrounding neighbors and selectively propagates discriminative information to non-discriminative, object related regions. Our methods can provide reliable initial segmentation masks for training subsequent segmentation network to generate final segmentation results. In addition, we refined convolutional block attention module (CBAM) [30] to hierarchically extract more category-aware features by capturing global context related information and further promote the propagation process. Experiments on benchmark demonstrate that our proposed method obtains superior performance over the state-of-the-arts. |
资助项目 | National Natural Science Foundation of China |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000522592200005 |
出版者 | SPRINGER |
资助机构 | National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/38758] ![]() |
专题 | 数字内容技术与服务研究中心_远程智能医疗 |
通讯作者 | Mao, Zhendong |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China 2.Chinese Acad Sci, Inst Informat Engn, Sch Cyber Secur, Beijing, Peoples R China 3.Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei, Peoples R China 4.China Acad Elect & Informat Technol, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Xu, Yajun,Mao, Zhendong,Chen, Zhineng,et al. Context propagation embedding network for weakly supervised semantic segmentation[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2020:18. |
APA | Xu, Yajun,Mao, Zhendong,Chen, Zhineng,Wen, Xin,&Li, Yangyang.(2020).Context propagation embedding network for weakly supervised semantic segmentation.MULTIMEDIA TOOLS AND APPLICATIONS,18. |
MLA | Xu, Yajun,et al."Context propagation embedding network for weakly supervised semantic segmentation".MULTIMEDIA TOOLS AND APPLICATIONS (2020):18. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。