Composite Learning Enhanced Robot Impedance Control
文献类型:期刊论文
作者 | Sun, Tairen1; Peng, Liang1![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
出版日期 | 2020-03-01 |
卷号 | 31期号:3页码:1052-1059 |
关键词 | Impedance Convergence Robots Stability criteria Uncertainty Parameter estimation Adaptive control composite adaptation impedance control learning control parameter convergence robot |
ISSN号 | 2162-237X |
DOI | 10.1109/TNNLS.2019.2912212 |
通讯作者 | Hou, Zeng-Guang(zengguang.hou@ia.ac.cn) |
英文摘要 | The desired impedance dynamics can be achieved for a robot if and only if an impedance error converges to zero or a small neighborhood of zero. Although the convergence of impedance errors is important, it is seldom obtained in the existing impedance controllers due to robots modeling uncertainties and external disturbances. This brief proposes two composite learning impedance controllers (CLICs) for robots with parameter uncertainties based on whether a factorization assumption is satisfied or not. In the proposed control designs, the convergence of impedance errors, reflected by the convergence of parameter estimation errors and some auxiliary errors, is achieved by using composite learning laws under a relaxed excitation condition. The theoretical results are proven based on the Lyapunov theory. The effectiveness and advantages of the proposed CLICs are validated by simulations on a parallel robot in three cases. |
资助项目 | National Natural Science Foundation of China[61720106012] ; National Natural Science Foundation of China[61533016] ; National Natural Science Foundation of China[61873268] ; National Natural Science Foundation of China[61633016] ; National Natural Science Foundation of China[61703295] ; National Natural Science Foundation of China[61603386] ; Beijing Natural Science Foundation[3171001] ; Beijing Natural Science Foundation[L172050] ; Strategic Priority Research Program of Chinese Academy of Science[XDB32040000] ; Beijing Municipal Natural Science Foundation[L182060] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000521961300029 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; Beijing Natural Science Foundation ; Strategic Priority Research Program of Chinese Academy of Science ; Beijing Municipal Natural Science Foundation |
源URL | [http://ir.ia.ac.cn/handle/173211/38764] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队 |
通讯作者 | Hou, Zeng-Guang |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 2.Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China 3.CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Sun, Tairen,Peng, Liang,Cheng, Long,et al. Composite Learning Enhanced Robot Impedance Control[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2020,31(3):1052-1059. |
APA | Sun, Tairen,Peng, Liang,Cheng, Long,Hou, Zeng-Guang,&Pan, Yongping.(2020).Composite Learning Enhanced Robot Impedance Control.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,31(3),1052-1059. |
MLA | Sun, Tairen,et al."Composite Learning Enhanced Robot Impedance Control".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 31.3(2020):1052-1059. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。