中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Estimation of human impedance and motion intention for constrained human-robot interaction

文献类型:期刊论文

作者Yu, Xinbo1,2,3; Li, Yanan4; Zhang, Shuang1,2,3; Xue, Chengqian1,2,3; Wang, Yu5
刊名NEUROCOMPUTING
出版日期2020-05-21
卷号390页码:268-279
关键词Human motion intention estimation Impedance learning Adaptive neural network control Full-state constraints Barrier Lyapunov functions
ISSN号0925-2312
DOI10.1016/j.neucom.2019.07.104
通讯作者Zhang, Shuang(zhangshuang.ac@gmail.com)
英文摘要In this paper, a complete framework for safe and efficient physical human-robot interaction (pHRI) is developed for robot by considering both issues of adaptation to the human partner and ensuring the motion constraints during the interaction. We consider the robot's learning of not only human motion intention, but also the human impedance. We employ radial basis function neural networks (RBFNNs) to estimate human motion intention in real time, and least square method is utilized in robot learning of human impedance. When robot has learned the impedance information about human, it can adjust its desired impedance parameters by a simple tuning law for operative compliance. An adaptive impedance control integrated with RBFNNs and full-state constraints is also proposed in our work. We employ RBFNNs to compensate for uncertainties in the dynamics model of robot and barrier Lyapunov functions are chosen to ensure that full-state constraints are not violated in pHRI. Results in simulations and experiments show the better performance of our proposed framework compared with traditional methods. (C) 2019 Elsevier B.V. All rights reserved.
WOS关键词NEURAL-NETWORK CONTROL ; NONLINEAR-SYSTEMS ; TRACKING CONTROL ; ARM IMPEDANCE ; DESIGN
资助项目National Natural Science Foundation of China[61873297] ; China Postdoctoral Science Foundation[2019T120048] ; China Postdoctoral Science Foundation[2018M630074] ; Fundamental Research Funds for the Central Universities[FRF-GF-18-027B] ; Beijing Science and Technology Project[Z181100003118006]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000531728800007
出版者ELSEVIER
资助机构National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; Fundamental Research Funds for the Central Universities ; Beijing Science and Technology Project
源URL[http://ir.ia.ac.cn/handle/173211/39464]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
自动化研究所_复杂系统管理与控制国家重点实验室
通讯作者Zhang, Shuang
作者单位1.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
2.Univ Sci & Technol Beijing, Inst Artificial Intelligence, Beijing 100083, Peoples R China
3.Univ Sci & Technol Beijing, Key Lab Knowledge Automat Ind Proc, Minist Educ, Beijing 100083, Peoples R China
4.Univ Sussex, Dept Engn & Design, Brighton BN1 9RH, E Sussex, England
5.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yu, Xinbo,Li, Yanan,Zhang, Shuang,et al. Estimation of human impedance and motion intention for constrained human-robot interaction[J]. NEUROCOMPUTING,2020,390:268-279.
APA Yu, Xinbo,Li, Yanan,Zhang, Shuang,Xue, Chengqian,&Wang, Yu.(2020).Estimation of human impedance and motion intention for constrained human-robot interaction.NEUROCOMPUTING,390,268-279.
MLA Yu, Xinbo,et al."Estimation of human impedance and motion intention for constrained human-robot interaction".NEUROCOMPUTING 390(2020):268-279.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。