中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Inter-Patient ECG Classification With Symbolic Representations and Multi-Perspective Convolutional Neural Networks

文献类型:期刊论文

作者Niu, Jinghao1,2; Tang, Yongqiang1,2; Sun, Zhengya1,2; Zhang, Wensheng1,2
刊名IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
出版日期2020-05-01
卷号24期号:5页码:1321-1332
关键词Heart beat Electrocardiography Heart rate variability Deep learning Feature extraction Task analysis Informatics ECG classification biomedical monitoring convolutional neural network deep learning
ISSN号2168-2194
DOI10.1109/JBHI.2019.2942938
通讯作者Zhang, Wensheng(zhangwenshengia@hotmail.com)
英文摘要This paper presents a novel deep learning framework for the inter-patient electrocardiogram (ECG) heartbeat classification. A symbolization approach especially designed for ECG is introduced, which can jointly represent the morphology and rhythm of the heartbeat and alleviate the influence of inter-patient variation through baseline correction. The symbolic representation of the heartbeat is used by a multi-perspective convolutional neural network (MPCNN) to learn features automatically and classify the heartbeat. We evaluate our method for the detection of the supraventricular ectopic beat (SVEB) and ventricular ectopic beat (VEB) on MIT-BIH arrhythmia dataset. Compared with the state-of-the-art methods based on manual features or deep learning models, our method shows superior performance: the overall accuracy of 96.4%, F1 scores for SVEB and VEB of 76.6% and 89.7%, respectively. The ablation study on our method validates the effectiveness of the proposed symbolization approach and joint representation architecture, which can help the deep learning model to learn more general features and improve the ability of generalization for unseen patients. Because our method achieves a competitive inter-patient heartbeat classification performance without complex handcrafted features or the intervention of the human expert, it can also be adjusted to handle various other tasks relative to ECG classification.
WOS关键词HEARTBEAT CLASSIFICATION ; ARRHYTHMIA DETECTION ; FEATURES
资助项目National Key R&D Program of China[2017YFC0803700] ; National Natural Science Foundation of China[61432008] ; National Natural Science Foundation of China[61876183] ; Beijing Municipal Natural Science Foundation[4172063]
WOS研究方向Computer Science ; Mathematical & Computational Biology ; Medical Informatics
语种英语
WOS记录号WOS:000535614100009
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key R&D Program of China ; National Natural Science Foundation of China ; Beijing Municipal Natural Science Foundation
源URL[http://ir.ia.ac.cn/handle/173211/39530]  
专题精密感知与控制研究中心_人工智能与机器学习
自动化研究所_精密感知与控制研究中心
通讯作者Zhang, Wensheng
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Niu, Jinghao,Tang, Yongqiang,Sun, Zhengya,et al. Inter-Patient ECG Classification With Symbolic Representations and Multi-Perspective Convolutional Neural Networks[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2020,24(5):1321-1332.
APA Niu, Jinghao,Tang, Yongqiang,Sun, Zhengya,&Zhang, Wensheng.(2020).Inter-Patient ECG Classification With Symbolic Representations and Multi-Perspective Convolutional Neural Networks.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,24(5),1321-1332.
MLA Niu, Jinghao,et al."Inter-Patient ECG Classification With Symbolic Representations and Multi-Perspective Convolutional Neural Networks".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 24.5(2020):1321-1332.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。