Semantic-spatial fusion network for human parsing
文献类型:期刊论文
作者 | Zhang, Xiaomei1,2![]() ![]() ![]() ![]() ![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2020-08-18 |
卷号 | 402页码:375-383 |
关键词 | SSFNet Semantic modulation model Resolution-aware model Human parsing |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2020.03.096 |
通讯作者 | Chen, Yingying(yingying.chen@nlpr.ia.ac.cn) |
英文摘要 | Recently, many methods have united low-level and high-level features to generate the desired accurate high-resolution prediction for human parsing. Nevertheless, there exists a semantic-spatial gap between low-level and high-level features in some methods, i.e., high-level features represent more semantics and less spatial details, while low-level ones have less semantics and more spatial details. In this paper, we propose a Semantic-Spatial Fusion Network (SSFNet) for human parsing to shrink the gap, which generates the accurate high-resolution prediction by aggregating multi-resolution features. SSFNet includes two models, a semantic modulation model and a resolution-aware model. The semantic modulation model guides spatial details with semantics and then effectively facilitates the feature fusion, narrowing the gap. The resolution-aware model sufficiently boosts the feature fusion and obtains multi-receptive-fields, which generates reliable and fine-grained high-resolution features for each branch, in bottom-up and top-down processes. Extensive experiments on three public datasets, PASCAL-Person-Part, LIP and PPSS, show that SSFNet achieves significant improvements over state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved. |
WOS关键词 | SEGMENTATION ; MODELS |
资助项目 | National Natural Science Foundation of China[61976210] ; National Natural Science Foundation of China[61772527] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000538815500005 |
出版者 | ELSEVIER |
资助机构 | National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/39810] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_图像与视频分析团队 |
通讯作者 | Chen, Yingying |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Xiaomei,Chen, Yingying,Zhu, Bingke,et al. Semantic-spatial fusion network for human parsing[J]. NEUROCOMPUTING,2020,402:375-383. |
APA | Zhang, Xiaomei,Chen, Yingying,Zhu, Bingke,Wang, Jinqiao,&Tang, Ming.(2020).Semantic-spatial fusion network for human parsing.NEUROCOMPUTING,402,375-383. |
MLA | Zhang, Xiaomei,et al."Semantic-spatial fusion network for human parsing".NEUROCOMPUTING 402(2020):375-383. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。