Jointly Adversarial Enhancement Training for Robust End-to-End Speech Recognition
文献类型:会议论文
作者 | Bin,Liu1,6; Shuai,Nie6; Shan,Liang6; Wenju,Liu6; Meng,Yu5; Lianwu,Chen4; Shouye,Peng3; Changliang,Li2; Liang, Shan![]() ![]() |
出版日期 | 2019-09 |
会议日期 | 2019-9-15 |
会议地点 | Graz, Austria |
关键词 | End-to-end Speech Recognition Robust Speech Recognition Speech Enhancement Generative Adversarial Networks |
英文摘要 | Recently, the end-to-end system has made significant breakthroughs |
会议录出版者 | ISCA |
会议录出版地 | Austria |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61573357] ; National Natural Science Foundation of China[61503382] ; National Natural Science Foundation of China[61403370] ; National Natural Science Foundation of China[61273267] ; National Natural Science Foundation of China[91120303] |
源URL | [http://ir.ia.ac.cn/handle/173211/38561] ![]() |
专题 | 模式识别国家重点实验室_智能交互 |
作者单位 | 1.School of Artificial Intelligence, University of Chinese Academy of Sciences, China 2.kingsoft AI lab, China 3.Xueersi Online School, China 4.Tencent AI Lab, Shenzhen, China 5.Tencent AI Lab, Bellevue, WA, USA 6.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China |
推荐引用方式 GB/T 7714 | Bin,Liu,Shuai,Nie,Shan,Liang,et al. Jointly Adversarial Enhancement Training for Robust End-to-End Speech Recognition[C]. 见:. Graz, Austria. 2019-9-15. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。