Deep Segment Attentive Embedding for Duration Robust Speaker Verification
文献类型:会议论文
作者 | Bin,Liu3,4; Shuai,Nie4; Wenju,Liu4; Hui,Zhang2; Xiangang,Li2; Changliang,Li1; Liu, Wenju![]() ![]() ![]() ![]() |
出版日期 | 2019-11 |
会议日期 | 2019-11-18 |
会议地点 | 兰州 |
英文摘要 | Deep learning based speaker verification usually uses a fixed-length local segment randomly truncated from an utterance to learn the utterance-level speaker embedding, while using the average embedding of all segments of a test utterance to verify the speaker, which results in a critical mismatch between testing and training. This mismatch degrades the performance of speaker verification, especially when the durations of training and testing utterances are very different. To alleviate this issue, |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61573357] ; National Natural Science Foundation of China[61503382] ; National Natural Science Foundation of China[61403370] ; National Natural Science Foundation of China[61273267] ; National Natural Science Foundation of China[91120303] |
源URL | [http://ir.ia.ac.cn/handle/173211/39031] ![]() |
专题 | 模式识别国家重点实验室_智能交互 |
作者单位 | 1.kingsoft AI lab 2.DiDi AI Labs 3.School of Artificial Intelligence, University of Chinese Academy of Sciences 4.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Bin,Liu,Shuai,Nie,Wenju,Liu,et al. Deep Segment Attentive Embedding for Duration Robust Speaker Verification[C]. 见:. 兰州. 2019-11-18. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。