中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Fast Online Object Tracking and Segmentation: A Unifying Approach

文献类型:会议论文

作者Qiang Wang3; Li Zhang2; Luca Bertinetto1; Weiming Hu3; Philip H.S. Torr2; Hu, Weiming; Wang, Qiang
出版日期2019-06
会议日期2019-7
会议地点Long Beach, CA, USA
英文摘要

In this paper we illustrate how to perform both visual object tracking and semi-supervised video object segmentation, in real-time, with a single simple approach. Our method, dubbed SiamMask, improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task. Once trained, SiamMask solely relies on a single bounding box initialisation and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 55 frames per second. Despite its simplicity, versatility and fast speed, our strategy allows us to establish a new state of the art among real-time trackers on VOT-2018, while at the same time demonstrating competitive performance and the best speed for the semi-supervised video object segmentation task on DAVIS-2016 and DAVIS-2017.

源URL[http://ir.ia.ac.cn/handle/173211/39072]  
专题自动化研究所_模式识别国家重点实验室_视频内容安全团队
作者单位1.Five AI
2.University of Oxford
3.CASIA
推荐引用方式
GB/T 7714
Qiang Wang,Li Zhang,Luca Bertinetto,et al. Fast Online Object Tracking and Segmentation: A Unifying Approach[C]. 见:. Long Beach, CA, USA. 2019-7.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。