Fast Online Object Tracking and Segmentation: A Unifying Approach
文献类型:会议论文
作者 | Qiang Wang3; Li Zhang2; Luca Bertinetto1; Weiming Hu3; Philip H.S. Torr2; Hu, Weiming![]() ![]() |
出版日期 | 2019-06 |
会议日期 | 2019-7 |
会议地点 | Long Beach, CA, USA |
英文摘要 | In this paper we illustrate how to perform both visual object tracking and semi-supervised video object segmentation, in real-time, with a single simple approach. Our method, dubbed SiamMask, improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task. Once trained, SiamMask solely relies on a single bounding box initialisation and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 55 frames per second. Despite its simplicity, versatility and fast speed, our strategy allows us to establish a new state of the art among real-time trackers on VOT-2018, while at the same time demonstrating competitive performance and the best speed for the semi-supervised video object segmentation task on DAVIS-2016 and DAVIS-2017. |
源URL | [http://ir.ia.ac.cn/handle/173211/39072] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
作者单位 | 1.Five AI 2.University of Oxford 3.CASIA |
推荐引用方式 GB/T 7714 | Qiang Wang,Li Zhang,Luca Bertinetto,et al. Fast Online Object Tracking and Segmentation: A Unifying Approach[C]. 见:. Long Beach, CA, USA. 2019-7. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。