中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dense Chained Attention Network for Scene Text Recognition

文献类型:会议论文

作者Gao, Yunze1,2; Chen, Yingying1,2; Wang, Jinqiao1,2; Tang, Ming1,2; Lu, Hanqing1,2
出版日期2018-10
会议日期2018-10
会议地点Athens,Greece
英文摘要

Reading text in the wild is a challenging task in computer vision. Scene text suffers from various background noise, including shadow, irrelevant symbols and background texture. In order to reduce the disturbance of background noise, we propose a dense chained attention network with stacked attention modules for scene text recognition. Each attention module learns the attention map that is adapted to corresponding features to enhance the foreground text and suppress the background noise. Besides, the attention branch is designed with the convolution-deconvolution structure which rapidly captures global information to guide the discriminative feature selection. We stack multiple attention modules to gradually refine the attention maps and capture both the low-level appearance feature and the high-level semantic information. Extensive experiments on the standard benchmarks, the Street View Text, IIIT5K, and ICDAR datasets validate the superiority of the proposed method. The dense chained attention network achieves state-of-the-art or highly competitive recognition performance.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/39293]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
通讯作者Gao, Yunze
作者单位1.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Gao, Yunze,Chen, Yingying,Wang, Jinqiao,et al. Dense Chained Attention Network for Scene Text Recognition[C]. 见:. Athens,Greece. 2018-10.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。