Multichannel LSTM-CRF for Named Entity Recognition in Chinese Social Media
文献类型:会议论文
作者 | Dong Chuanhai1,3; Wu Huijia1,3; Zhang Jiajun1,3; Zong Chengqing1,2,3; Dong, Chuanhai![]() ![]() ![]() ![]() |
出版日期 | 2017-10 |
会议日期 | 2017-10 |
会议地点 | Nanjing, China |
关键词 | Multichannel Named entity recognition Chinese social media |
DOI | https://doi.org/10.1007/978-3-319-69005-6_17 |
英文摘要 | Named Entity Recognition (NER) is a tough task in Chinese social media due to a large portion of informal writings. Existing research uses only limited in-domain annotated data and achieves low performance. In this paper, we utilize both limited in-domain data and enough out-of-domain data using a domain adaptation method. We propose a multichannel LSTM-CRF model that employs different channels to capture general patterns, in-domain patterns and out-of-domain patterns in Chinese social media. The extensive experiments show that our model yields 9.8% improvement over previous state-of-the-art methods. We further find that a shared embedding layer is important and randomly initialized embeddings are better than the pretrained ones. |
会议录出版者 | Springer, Cham |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/39256] ![]() |
专题 | 模式识别国家重点实验室_自然语言处理 |
通讯作者 | Zong Chengqing; Zong, Chengqing |
作者单位 | 1.CASIA, National Laboratory of Pattern Recognition, Beijing, China 2.University of Chinese Academy of Sciences, Beijing, China 3.CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China |
推荐引用方式 GB/T 7714 | Dong Chuanhai,Wu Huijia,Zhang Jiajun,et al. Multichannel LSTM-CRF for Named Entity Recognition in Chinese Social Media[C]. 见:. Nanjing, China. 2017-10. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。