中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multichannel LSTM-CRF for Named Entity Recognition in Chinese Social Media

文献类型:会议论文

作者Dong Chuanhai1,3; Wu Huijia1,3; Zhang Jiajun1,3; Zong Chengqing1,2,3; Dong, Chuanhai; Zhang, Jiajun; Zong, Chengqing; Wu, Huijia
出版日期2017-10
会议日期2017-10
会议地点Nanjing, China
关键词Multichannel Named entity recognition Chinese social media
DOIhttps://doi.org/10.1007/978-3-319-69005-6_17
英文摘要

Named Entity Recognition (NER) is a tough task in Chinese social media due to a large portion of informal writings. Existing research uses only limited in-domain annotated data and achieves low performance. In this paper, we utilize both limited in-domain data and enough out-of-domain data using a domain adaptation method. We propose a multichannel LSTM-CRF model that employs different channels to capture general patterns, in-domain patterns and out-of-domain patterns in Chinese social media. The extensive experiments show that our model yields 9.8% improvement over previous state-of-the-art methods. We further find that a shared embedding layer is important and randomly initialized embeddings are better than the pretrained ones.

会议录出版者Springer, Cham
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/39256]  
专题模式识别国家重点实验室_自然语言处理
通讯作者Zong Chengqing; Zong, Chengqing
作者单位1.CASIA, National Laboratory of Pattern Recognition, Beijing, China
2.University of Chinese Academy of Sciences, Beijing, China
3.CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
推荐引用方式
GB/T 7714
Dong Chuanhai,Wu Huijia,Zhang Jiajun,et al. Multichannel LSTM-CRF for Named Entity Recognition in Chinese Social Media[C]. 见:. Nanjing, China. 2017-10.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。