中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unsupervised Part-Based Weighting Aggregation Unsupervised Part-Based Weighting Aggregation

文献类型:会议论文

作者Xu J(徐健)1,2; Shi CZ(史存召)2; Qi CZ(祁成祚)1,2; Wang CH(王春恒)2; Xiao BH(肖柏华)2; Shi, Cunzhao; Xu, Jian; Qi, Chengzuo; Wang, Chunheng; Xiao, Baihua
出版日期2018-02
会议日期2018-2
会议地点美国
英文摘要

In this paper, we propose a simple but effective semantic part-based weighting aggregation (PWA) for image retrieval. The proposed PWA utilizes the discriminative filters of deep convolutional layers as part detectors. Moreover, we propose the effective unsupervised strategy to select some part detectors to generate the “probabilistic proposals”, which highlight certain discriminative parts of objects and suppress the
noise of background. The final global PWA representation could then be acquired by aggregating the regional representations weighted by the selected ”probabilistic proposals”corresponding to various semantic content. We conduct comprehensive experiments on four standard datasets and show that our unsupervised PWA outperforms the state-of-the-art unsupervised and supervised aggregation methods.

会议录出版者AAAI
会议录出版地美国
语种英语
资助项目National Natural Science Foundation of China[61601462] ; National Natural Science Foundation of China[71621002] ; National Natural Science Foundation of China[61531019]
源URL[http://ir.ia.ac.cn/handle/173211/38518]  
专题自动化研究所_复杂系统管理与控制国家重点实验室
通讯作者Wang CH(王春恒); Wang, Chunheng
作者单位1.University of Chinese Academy of Sciences
2.State Key Laboratory of Management and Control for Complex Systems,Institute of Automation, Chinese Academy of Sciences(CASIA)
推荐引用方式
GB/T 7714
Xu J,Shi CZ,Qi CZ,et al. Unsupervised Part-Based Weighting Aggregation Unsupervised Part-Based Weighting Aggregation[C]. 见:. 美国. 2018-2.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。