中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Prior Knowledge Based Neural Attention Model for Opioid Topic Identification

文献类型:会议论文

作者Riheng Yao1,3,4; Qiudan Li1,4; Wei-Hsuan Lo-Ciganic2; Daniel Dajun Zeng1,3,4; Li, Qiudan; Zeng, Daniel Dajun; Yao, Riheng
出版日期2019-09-05
会议日期1-3 July 2019
会议地点Shenzhen, China
关键词prior knowledge attention opioid topic
英文摘要

The opioid epidemic has become a serious public health crisis in the United States. Social media sources such as Reddit containing user-generated content may be a valuable safety surveillance platform to evaluate discussions discerning opioid use. This paper proposes a prior knowledge based neural attention model for opioid topics identification, which considers prior knowledge with attention mechanism. Experimental results on a real-world dataset show that our model can extract coherent topics, the identified less discussed but important topics provide more comprehensive information for opioid safety surveillance.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/39037]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心
作者单位1.Shenzhen Artificial Intelligence and Data Science Institute
2.Department of Pharmaceutical Outcomes & Policy, University of Florida
3.University of Chinese Academy of Sciences
4.The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Riheng Yao,Qiudan Li,Wei-Hsuan Lo-Ciganic,et al. A Prior Knowledge Based Neural Attention Model for Opioid Topic Identification[C]. 见:. Shenzhen, China. 1-3 July 2019.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。