A Prior Knowledge Based Neural Attention Model for Opioid Topic Identification
文献类型:会议论文
作者 | Riheng Yao1,3,4; Qiudan Li1,4; Wei-Hsuan Lo-Ciganic2; Daniel Dajun Zeng1,3,4; Li, Qiudan![]() ![]() ![]() |
出版日期 | 2019-09-05 |
会议日期 | 1-3 July 2019 |
会议地点 | Shenzhen, China |
关键词 | prior knowledge attention opioid topic |
英文摘要 | The opioid epidemic has become a serious public health crisis in the United States. Social media sources such as Reddit containing user-generated content may be a valuable safety surveillance platform to evaluate discussions discerning opioid use. This paper proposes a prior knowledge based neural attention model for opioid topics identification, which considers prior knowledge with attention mechanism. Experimental results on a real-world dataset show that our model can extract coherent topics, the identified less discussed but important topics provide more comprehensive information for opioid safety surveillance. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/39037] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心 |
作者单位 | 1.Shenzhen Artificial Intelligence and Data Science Institute 2.Department of Pharmaceutical Outcomes & Policy, University of Florida 3.University of Chinese Academy of Sciences 4.The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Riheng Yao,Qiudan Li,Wei-Hsuan Lo-Ciganic,et al. A Prior Knowledge Based Neural Attention Model for Opioid Topic Identification[C]. 见:. Shenzhen, China. 1-3 July 2019. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。