Kernelized correlation filter tracking with scale adaptive filter and feature integration
文献类型:会议论文
作者 | Jiang, Shan![]() ![]() ![]() |
出版日期 | 2018-12-08 |
会议日期 | 2018-12-7 |
会议地点 | 成都 |
关键词 | computer vision, visual tracking, correaltion filter, scale, feature |
英文摘要 | Recently, kernelized correlation filter (KCF) has been a popular tracker for high accuracy and robustness with high speed. However, KCF tracks objects with a fixed size template without scale estimation, causing tracking failure during target scale changes because of learning background or local appearance of the target. In this paper, we incorporate a separate scale filter into KCF tracker with feature integration. Experiments have shown that our tracker outperforms KCF and other scale adaptive trackers on distance and overlap precision while attaining relatively high speed. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/39290] ![]() |
专题 | 自动化研究所_综合信息系统研究中心 |
作者单位 | 1.Institute of Automation, CAS 2.University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Jiang, Shan,Li, Shuxiao,Zhu, Chengfei. Kernelized correlation filter tracking with scale adaptive filter and feature integration[C]. 见:. 成都. 2018-12-7. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。