中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Kernelized correlation filter tracking with scale adaptive filter and feature integration

文献类型:会议论文

作者Jiang, Shan; Li, Shuxiao; Zhu, Chengfei
出版日期2018-12-08
会议日期2018-12-7
会议地点成都
关键词computer vision, visual tracking, correaltion filter, scale, feature
英文摘要

Recently, kernelized correlation filter (KCF) has been a popular tracker for high accuracy and robustness with high speed. However, KCF tracks objects with a fixed size template without scale estimation, causing tracking failure during target scale changes because of learning background or local appearance of the target. In this paper, we incorporate a separate scale filter into KCF tracker with feature integration. Experiments have shown that our tracker outperforms KCF and other scale adaptive trackers on distance and overlap precision while attaining relatively high speed.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/39290]  
专题自动化研究所_综合信息系统研究中心
作者单位1.Institute of Automation, CAS
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Jiang, Shan,Li, Shuxiao,Zhu, Chengfei. Kernelized correlation filter tracking with scale adaptive filter and feature integration[C]. 见:. 成都. 2018-12-7.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。