中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
No-contactHeartRatemonitoringbasedonChannelAttentionConvolution Model

文献类型:会议论文

作者WenSun; HaoWei; XueenLi; Wei, Hao; Li, Xueen; Sun, Wen
出版日期2020-03
会议日期2019-10
会议地点Hangzhou, China
关键词HeartRate,ChannelAttentionMechanism, ConvolutionNeuralNetwork,ECG-fitness Dataset
英文摘要

No-contact heart rate monitoring based on remote Photoplethysmography(rPPG) via camera video has drawn more and more attention because of its promising use in patient nursing, telemedicine, fitness, trial. Many traditional signal processing methods (FFT, ICA, PCA) were proposed to solve this problem, but the results were still limited to interference of motion and lighting conditions. In facial RGB images, the signal-to-noise ratio of green channel is higher than that of the other two channels, and the heart rate can be measured more accurately by assigning different weights to three channels. In this paper we propose a novel deep convolution neural network model based on channel-attention mechanism to extract the heart rate information from each frame of the video. To get more accurate result of the heart rate in the condition of face moving, light change and other interference factors, the model was trained on the newly introduced public challenge ECG-Fitness database and the model’s robustness was tested on this dataset. Testing results showthatthemodeloutperformspreviousmethods

源URL[http://ir.ia.ac.cn/handle/173211/39260]  
专题数字内容技术与服务研究中心_智能技术与系统工程
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
WenSun,HaoWei,XueenLi,et al. No-contactHeartRatemonitoringbasedonChannelAttentionConvolution Model[C]. 见:. Hangzhou, China. 2019-10.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。