Single-channel Speech Dereverberation via Generative Adversarial Training
文献类型:会议论文
作者 | Li, Chenxing1,2![]() ![]() ![]() |
出版日期 | 2018-09 |
会议日期 | 2018-9 |
会议地点 | Hyderabad |
英文摘要 | In this paper, we propose a single-channel speech dereverberation system (DeReGAT) based on convolutional, bidirectional long short-term memory and deep feed-forward neural network (CBLDNN) with generative adversarial training (GAT). In order to obtain better speech quality instead of only minimizing a mean square error (MSE), GAT is employed to make the dereverberated speech indistinguishable form the clean samples. Besides, our system can deal with wide range reverberation and be well adapted to variant environments. The experimental results show that the proposed model outperforms weighted prediction error (WPE) and deep neural network-based systems. In addition, DeReGAT is extended to an online speech dereverberation scenario, which reports comparable performance with the offline case. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/39851] ![]() |
专题 | 数字内容技术与服务研究中心_智能技术与系统工程 |
通讯作者 | Li, Chenxing |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Li, Chenxing,Wang, Tieqiang,Xu, Shuang,et al. Single-channel Speech Dereverberation via Generative Adversarial Training[C]. 见:. Hyderabad. 2018-9. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。