中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
End-to-End Chinese Image Text Recognition with Attention Model

文献类型:会议论文

作者Sheng Fenfen1,2; Zhai Chuanlei1,2; Chen Zhineng2; Xu Bo2; Chen, Zhineng; Sheng, Fenfen; Zhai, Chuanlei; Xu, Bo
出版日期2017-11
会议日期2017-11-14 ~ 2017-11-18
会议地点Guangzhou, China
英文摘要

This paper presents an attention-based model for end-to-end Chinese image text recognition. The proposed model includes an encoder and a decoder. For each input text image, the encoder part firstly combines deep convolutional layers with bidirectional Recurrent Neural Network to generate an ordered, high-level feature sequence, which could avoid the complicated text segmentation pre-processing. Then in the decoder, a recurrent network with attention mechanism is developed to generate text line output, enabling the model to selectively exploit image features from the encoder correspondingly. The whole segmentation-free model allows end-to-end training within a standard backpropagation algorithm. Extensive experiments demonstrate significant performance improvements comparing to baseline systems. Furthermore, qualitative analysis reveals that the proposed model could learn the alignment between input and output in accordance with the intuition.

源URL[http://ir.ia.ac.cn/handle/173211/39262]  
专题数字内容技术与服务研究中心_听觉模型与认知计算
作者单位1.University of Chinese Academy of Sciences
2.Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Sheng Fenfen,Zhai Chuanlei,Chen Zhineng,et al. End-to-End Chinese Image Text Recognition with Attention Model[C]. 见:. Guangzhou, China. 2017-11-14 ~ 2017-11-18.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。