FlexNER: A Flexible LSTM-CNN Stack Framework for Named Entity Recognition
文献类型:会议论文
作者 | Zhu, Hongyin1![]() ![]() ![]() |
出版日期 | 2019-10-09 |
会议日期 | 2019-10-9 |
会议地点 | Dunhuang |
英文摘要 | Named entity recognition (NER) is a foundational technology for information extraction. This paper presents a flexible NER framework compatible with different languages and domains. Inspired by the idea of distant supervision (DS), this paper enhances the representation by increasing the entity-context diversity without relying on external resources. We choose different layer stacks and sub-network combinations to construct the bilateral networks. This strategy can generally improve model performance on different datasets. We conduct experiments on five languages, such as English, German, Spanish, Dutch and Chinese, and biomedical fields, such as identifying the chemicals and gene/protein terms from scientific works. Experimental results demonstrate the good performance of this framework. |
会议录出版者 | Springer |
会议录出版地 | Dunhuang |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/39287] ![]() |
专题 | 类脑智能研究中心_类脑认知计算 |
通讯作者 | Zeng, Yi |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.School of Mathematical Sciences, Peking University |
推荐引用方式 GB/T 7714 | Zhu, Hongyin,Hu, Wenpeng,Zeng, Yi. FlexNER: A Flexible LSTM-CNN Stack Framework for Named Entity Recognition[C]. 见:. Dunhuang. 2019-10-9. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。