中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
FlexNER: A Flexible LSTM-CNN Stack Framework for Named Entity Recognition

文献类型:会议论文

作者Zhu, Hongyin1; Hu, Wenpeng2; Zeng, Yi1
出版日期2019-10-09
会议日期2019-10-9
会议地点Dunhuang
英文摘要

Named entity recognition (NER) is a foundational technology for information extraction. This paper presents a flexible NER framework compatible with different languages and domains. Inspired by the idea of distant supervision (DS), this paper enhances the representation by increasing the entity-context diversity without relying on external resources. We choose different layer stacks and sub-network combinations to construct the bilateral networks. This strategy can generally improve model performance on different datasets. We conduct experiments on five languages, such as English, German, Spanish, Dutch and Chinese, and biomedical fields, such as identifying the chemicals and gene/protein terms from scientific works. Experimental results demonstrate the good performance of this framework.

会议录出版者Springer
会议录出版地Dunhuang
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/39287]  
专题类脑智能研究中心_类脑认知计算
通讯作者Zeng, Yi
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.School of Mathematical Sciences, Peking University
推荐引用方式
GB/T 7714
Zhu, Hongyin,Hu, Wenpeng,Zeng, Yi. FlexNER: A Flexible LSTM-CNN Stack Framework for Named Entity Recognition[C]. 见:. Dunhuang. 2019-10-9.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。