面向健康管理的多源异质数据表示学习研究与应用
文献类型:学位论文
作者 | 黄毅![]() |
答辩日期 | 2020-05-24 |
文献子类 | 硕士 |
授予单位 | 中国科学院大学 |
授予地点 | 中国科学院自动化研究所 |
导师 | 徐常胜 |
关键词 | 多源异质数据 表示学习 健康状况预测 行为识别 |
学位专业 | 模式识别与智能系统 |
英文摘要 | 计算机与物联网技术的发展,使得医疗、日常事件相关的数据类型和数据规模迅速增长,促进了以用户个体为中心的健康大数据形成。面向规模庞大、结构复杂的个体实时健康数据的相关研究,能够帮助人们更加科学地分析与管理自身的行为,提升身体健康与生活质量。个体实时健康数据的表示学习已经成为健康大数据研究领域的一个核心研究课题。 本文聚焦面向健康管理的多源异质数据表示学习研究与应用,通过解决多源异质数据流的统一表征、缺失模态数据的重建特征表示和样本稀缺条件下的多模态特征融合三个挑战,形成完善的跨模态高维数据流融合与特征学习的研究模式。本文的主要工作包括: (1)多源异质数据流的特征学习研究。以用户个体为中心的实时健康数据具有数据来源不同、模态表示差异大的特点,融合实时行为数据时还需要处理不同源数据的采集频率不一致、同源数据内部的采集频率变化问题。本文针对多源异质数据流的统一表征问题,提出了一种时间引导的高阶注意力融合模型,全面、综合地建模多模态数据流中不同模态数据之间、不同时刻数据之间的关联关系。模型主要考虑单模态不规则序列内部的1阶关系,多模态数据之间的2阶相关性以及多模态序列数据之间的3阶关系,然后使用注意力融合模块综合考虑3种数据关系在特征融合中重要程度,最后得到多源异质数据的统一表征。在MIMIC-III和PPMI两个数据集上进行的两个不同健康状况预测任务,验证了模型针对不同数据类型和不同任务都具备有效性。 (2)多源数据的互补特征学习研究。已有的多源数据融合方法主要关注在多种模态数据同时存在的情形下进行数据的匹配和融合,无法解决实际情况中的数据源缺失问题。本文针对多源数据困难存在数据缺失的情况,提出了一种同时包含多个数据源信息的全息特征(Holographic Feature)概念和对应的全息特征学习模型。该模型通过学习构建包含各自数据源信息的记忆模块,然后使用单个数据源的数据从记忆模块中幻想出缺失数据源的信息,从而构建全息特征。实验中进行了基于第一视角和第三视角视频的跨视角行为识别任务,在Charades-Ego和EPIC-MPII数据集上的进行监督和无监督两个实验的实验结果验证了全息特征学习的有效性。 (3)知识驱动的多模态特征学习研究。记录日常行为事件的多模态数据存在标注数据稀缺的问题,难以依靠数据驱动的深度学习模型进行有效的多模态特征融合。本文提出了一个知识驱动的多模态特征学习模型,并应用到了多模态行为识任务中。该模型从多模态数据中提取有效的行为与物体概念,结合外部知识库建立概念之间的图谱关系。最后在外部知识辅助的条件下,使用图神经网络进行概念的动态推理建模和行为预测。在Multimodal、Stanford-ECM和DataEgo三个多模态行为识别数据集上的实验结果验证了模型的有效性。 综上所述,本文通过解决个体实时健康数据中的上述三个挑战,形成了有效的特征学习研究模式,通过充分、有效地从数据和外部知识库中发现、利用有价值的信息,为后续健康管理与决策做出了基础研究支持。 |
语种 | 中文 |
页码 | 84 |
源URL | [http://ir.ia.ac.cn/handle/173211/39207] ![]() |
专题 | 毕业生_硕士学位论文 |
推荐引用方式 GB/T 7714 | 黄毅. 面向健康管理的多源异质数据表示学习研究与应用[D]. 中国科学院自动化研究所. 中国科学院大学. 2020. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。