中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC

文献类型:期刊论文

AuthorRen, Jie1,2,3; Wu, Lei1; Yang, Jin Min2,3,4
SourcePHYSICS LETTERS B
Issued Date2020
Volume802Pages:135198
KeywordBOSON MODEL
ISSN0370-2693
DOI10.1016/j.physletb.2020.135198
English AbstractThe top-Higgs coupling plays an important role in particle physics and cosmology. The precision measurements of this coupling can provide an insight to new physics beyond the Standard Model. In this paper, we propose to use Message Passing Neural Network (MPNN) to reveal the CP nature of top-Higgs interaction through semi-leptonic channel pp -> t(-> bl(-) v(l))(t) over bar(->(b) over bar jj)h(-> b (b) over bar). Using the test statistics constructed from the event classification probabilities given by the MPNN, we find that the pure CP-even and CP-odd components can be well distinguished at the LHC, with at most 300 fb(-1) experimental data. (C) 2020 The Authors. Published by Elsevier B.V.
SubjectAstronomy & Astrophysics ; Physics
Language英语
源URL[http://ir.itp.ac.cn/handle/311006/27128]  
Collection理论物理研究所_理论物理所1978-2010年知识产出
Affiliation1.Nanjing Normal Univ, Dept Phys, Nanjing 210023, Peoples R China
2.Nanjing Normal Univ, Inst Theoret Phys, Nanjing 210023, Peoples R China
3.Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
5.Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
Recommended Citation
GB/T 7714
Ren, Jie,Wu, Lei,Yang, Jin Min. Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC[J]. PHYSICS LETTERS B,2020,802:135198.
APA Ren, Jie,Wu, Lei,&Yang, Jin Min.(2020).Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC.PHYSICS LETTERS B,802,135198.
MLA Ren, Jie,et al."Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC".PHYSICS LETTERS B 802(2020):135198.

入库方式: OAI收割

来源:理论物理研究所

浏览0
下载0
收藏0
其他版本

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.