中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Discrete variation, Euler-Lagrange cohomology and symplectic, multisymplectic structures

文献类型:会议论文

作者Guo, HY; Wu, K
出版日期2001
会议日期MAY 21-25, 2001
会议地点BEIJING, PEOPLES R CHINA
关键词NONCOMMUTATIVE DIFFERENTIAL-CALCULUS
卷号597
页码385-395
英文摘要We introduce the discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object. By virtue of this variational principle, we get the difference discrete Euler-Lagrange equations for the difference discrete classical mechanics and classical field theory. We also explore the difference discrete versions for the Euler-Lagrange cohomology and apply to the symplectic or multisymplectic geometry and preserving property in discrete mechanics and field theory. In terms of the difference discrete Euler-Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure preserving properties can always be established not only in the solution spaces of the discrete Euler-Lagrange equations but also in the function space in each case if and only if the relevant closed Euler-Lagrange cohomological conditions are satisfied.
会议录NONEQUILIBRIUM AND NONLINEAR DYNAMICS IN NUCLEAR AND OTHER FINITE SYSTEMS
会议录出版者AMER INST PHYSICS
会议录出版地MELVILLE
语种英语
ISSN号0094-243X
WOS研究方向Physics
ISBN号0-7354-0041-5
源URL[http://ir.itp.ac.cn/handle/311006/23759]  
专题SCI会议论文
作者单位Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Guo, HY,Wu, K. Discrete variation, Euler-Lagrange cohomology and symplectic, multisymplectic structures[C]. 见:. BEIJING, PEOPLES R CHINA. MAY 21-25, 2001.

入库方式: OAI收割

来源:理论物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。