Approximation of Bernoulli measures for non-uniformly hyperbolic systems
文献类型:期刊论文
作者 | Liao, Gang1; Sun, Wenxiang2; Vargas, Edson3; Wang, Shirou4,5 |
刊名 | ERGODIC THEORY AND DYNAMICAL SYSTEMS
![]() |
出版日期 | 2020 |
卷号 | 40期号:1页码:233-247 |
ISSN号 | 0143-3857 |
DOI | 10.1017/etds.2018.33 |
英文摘要 | An invariant measure is called a Bernoulli measure if the corresponding dynamics is isomorphic to a Bernoulli shift. We prove that for C1+alpha diffeomorphisms any weak mixing hyperbolic measure could be approximated by Bernoulli measures. This also holds true for C-1 diffeomorphisms preserving a weak mixing hyperbolic measure with respect to which the Oseledets decomposition is dominated. |
资助项目 | NSFC[11701402] ; NSFC[11790274] ; NSFC[11771026] ; NSFC[11471344] ; BK[20170327] ; Jiangsu province 'Double Plan' ; Fapesp[2015/20162-0] ; CNPq[310749/2015-8] ; PIMS PTCS ; PIMS CRG grant |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000500187000011 |
出版者 | CAMBRIDGE UNIV PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/50353] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Liao, Gang |
作者单位 | 1.Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China 2.Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China 3.Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil 4.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 5.Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada |
推荐引用方式 GB/T 7714 | Liao, Gang,Sun, Wenxiang,Vargas, Edson,et al. Approximation of Bernoulli measures for non-uniformly hyperbolic systems[J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS,2020,40(1):233-247. |
APA | Liao, Gang,Sun, Wenxiang,Vargas, Edson,&Wang, Shirou.(2020).Approximation of Bernoulli measures for non-uniformly hyperbolic systems.ERGODIC THEORY AND DYNAMICAL SYSTEMS,40(1),233-247. |
MLA | Liao, Gang,et al."Approximation of Bernoulli measures for non-uniformly hyperbolic systems".ERGODIC THEORY AND DYNAMICAL SYSTEMS 40.1(2020):233-247. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。