Computing eigenpairs of Hermitian matrices in perfect Krylov subspaces
文献类型:期刊论文
作者 | Bai, Zhong-Zhi1,2; Miao, Cun-Qiang1,2 |
刊名 | NUMERICAL ALGORITHMS
![]() |
出版日期 | 2019-12-01 |
卷号 | 82期号:4页码:1251-1277 |
关键词 | Hermitian eigenproblem Krylov subspace method Inexact iteration Convergence property |
ISSN号 | 1017-1398 |
DOI | 10.1007/s11075-018-00653-y |
英文摘要 | For computing the smallest eigenvalue and the corresponding eigenvector of a Hermitian matrix, by introducing a concept of perfect Krylov subspace, we propose a class of perfect Krylov subspace methods. For these methods, we prove their local, semilocal, and global convergence properties, and discuss their inexact implementations and preconditioning strategies. In addition, we use numerical experiments to demonstrate the convergence properties and exhibit the competitiveness of these methods with a few state-of-the art iteration methods such as Lanczos, rational Krylov sequence, and Jacobi-Davidson, when they are employed to solve large and sparse Hermitian eigenvalue problems. |
资助项目 | National Natural Science Foundation[11671393] ; National Natural Science Foundation for Creative Research Groups, People's Republic of China[11321061] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000500985600006 |
出版者 | SPRINGER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/50408] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Bai, Zhong-Zhi |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, POB 2719, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Bai, Zhong-Zhi,Miao, Cun-Qiang. Computing eigenpairs of Hermitian matrices in perfect Krylov subspaces[J]. NUMERICAL ALGORITHMS,2019,82(4):1251-1277. |
APA | Bai, Zhong-Zhi,&Miao, Cun-Qiang.(2019).Computing eigenpairs of Hermitian matrices in perfect Krylov subspaces.NUMERICAL ALGORITHMS,82(4),1251-1277. |
MLA | Bai, Zhong-Zhi,et al."Computing eigenpairs of Hermitian matrices in perfect Krylov subspaces".NUMERICAL ALGORITHMS 82.4(2019):1251-1277. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。