中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations

文献类型:期刊论文

作者Bai, Zhong-Zhi1,2; Lu, Kang-Ya1,2
刊名JOURNAL OF COMPUTATIONAL PHYSICS
出版日期2020-03-01
卷号404页码:13
关键词Spatial fractional diffusion equations Shifted finite-difference discretization Block Toeplitz-like matrix Block circulant-like matrix Preconditioning Eigenvalue distribution
ISSN号0021-9991
DOI10.1016/j.jcp.2019.109117
英文摘要The discretizations of two- and three-dimensional spatial fractional diffusion equations with the shifted finite-difference formulas of the Grunwald-Letnikov type can result in discrete linear systems whose coefficient matrices are of the form D + T, where D is a nonnegative diagonal matrix and T is a block-Toeplitz with Toeplitz-block matrix or a block-Toeplitz with each block being block-Toeplitz with Toeplitz-block matrix. For these discrete spatial fractional diffusion matrices, we construct diagonal and block-circulant with circulant-block splitting preconditioner for the two-dimensional case, and diagonal and block-circulant with each block being block-circulant with circulant-block splitting preconditioner for the three-dimensional case, to further accelerate the convergence rates of Krylov subspace iteration methods, and we analyze the eigenvalue distributions for the corresponding preconditioned matrices. Theoretical results show that except for a small number of outliners the eigenvalues of the preconditioned matrices are located within a complex disk centered at 1 with the radius being exactly less than 1, and numerical experiments demonstrate that these structured preconditioners can significantly improve the convergence behavior of the Krylov subspace iteration methods. Moreover, this approach is superior to the geometric multigrid method and the preconditioned conjugate gradient methods incorporated with the approximate inverse circulant-plusdiagonal preconditioners in both iteration counts and computing times. (C) 2019 Elsevier Inc. All rights reserved.
资助项目National Natural Science Foundation, P.R. China[11671393] ; National Natural Science Foundation, P.R. China[11911530082]
WOS研究方向Computer Science ; Physics
语种英语
WOS记录号WOS:000507854200015
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/50576]  
专题中国科学院数学与系统科学研究院
通讯作者Bai, Zhong-Zhi
作者单位1.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, POB 2719, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Bai, Zhong-Zhi,Lu, Kang-Ya. Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2020,404:13.
APA Bai, Zhong-Zhi,&Lu, Kang-Ya.(2020).Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations.JOURNAL OF COMPUTATIONAL PHYSICS,404,13.
MLA Bai, Zhong-Zhi,et al."Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations".JOURNAL OF COMPUTATIONAL PHYSICS 404(2020):13.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。