中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An improved Dai-Kou conjugate gradient algorithm for unconstrained optimization

文献类型:期刊论文

作者Liu, Zexian1,2; Liu, Hongwei2; Dai, Yu-Hong1
刊名COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
出版日期2019-11-02
页码23
关键词Conjugate gradient algorithm Limited memory Quasi-Newton method Preconditioned conjugate gradient algorithm Global convergence
ISSN号0926-6003
DOI10.1007/s10589-019-00143-4
英文摘要It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai-Kou conjugate gradient algorithm (SIAM J Optim 23(1):296-320, 2013), called CGOPT, has attracted many researchers' attentions due to its numerical efficiency. In this paper, we present an improved Dai-Kou conjugate gradient algorithm for unconstrained optimization, which only consists of two kinds of iterations. In the improved Dai-Kou conjugate gradient algorithm, we develop a new quasi-Newton method to improve the orthogonality by solving the subproblem in the subspace and design a modified strategy for the choice of the initial stepsize for improving the numerical performance. The global convergence of the improved Dai-Kou conjugate gradient algorithm is established without the strict assumptions in the convergence analysis of other limited memory conjugate gradient methods. Some numerical results suggest that the improved Dai-Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremendous improvement over the original Dai-Kou CG algorithm (CGOPT (1.0)) and is slightly superior to the latest limited memory conjugate gradient software package CG_DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150-2168, 2013) for the CUTEr library.
资助项目Chinese NSF[11631013] ; Chinese NSF[11971372] ; Key Project of Chinese National Programs for Fundamental Research and Development[2015CB856002] ; National Natural Science Foundation of China[11901561] ; Natural Science Foundation of Guangxi[2018GXNSFBA281180]
WOS研究方向Operations Research & Management Science ; Mathematics
语种英语
WOS记录号WOS:000493670900001
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/50624]  
专题中国科学院数学与系统科学研究院
通讯作者Dai, Yu-Hong
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
2.Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Liu, Zexian,Liu, Hongwei,Dai, Yu-Hong. An improved Dai-Kou conjugate gradient algorithm for unconstrained optimization[J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS,2019:23.
APA Liu, Zexian,Liu, Hongwei,&Dai, Yu-Hong.(2019).An improved Dai-Kou conjugate gradient algorithm for unconstrained optimization.COMPUTATIONAL OPTIMIZATION AND APPLICATIONS,23.
MLA Liu, Zexian,et al."An improved Dai-Kou conjugate gradient algorithm for unconstrained optimization".COMPUTATIONAL OPTIMIZATION AND APPLICATIONS (2019):23.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。