Modified Stencil Approximations for Fifth-Order Weighted Essentially Non-oscillatory Schemes
文献类型:期刊论文
作者 | Wang, Yahui1,2,4; Du, Yulong3; Zhao, Kunlei1,2,4; Yuan, Li1,2,4 |
刊名 | JOURNAL OF SCIENTIFIC COMPUTING
![]() |
出版日期 | 2019-11-01 |
卷号 | 81期号:2页码:898-922 |
关键词 | WENO scheme Stencil approximation order Smoothness indicator Hyperbolic conservation law Euler equation |
ISSN号 | 0885-7474 |
DOI | 10.1007/s10915-019-01042-w |
英文摘要 | In this paper, a modified fifth-order weighted essentially non-oscillatory (WENO) finite difference scheme is presented. The quadratic polynomial approximation of numerical flux on each candidate stencil of the traditional WENO-JS scheme is modified by adding a form of cubic terms such that the resulting stencil approximation achieves fourth-order accuracy. And the corresponding smoothness indicators are calculated. The modified candidate fluxes and local smoothness indicators, when used in the WENO-JS scheme, can make the resulting new scheme (called WENO-MS) achieve fifth-order convergence in smooth regions including first-order critical points. A series of one- and two-dimensional numerical examples are presented to demonstrate the performance of the new scheme. The numerical results show that the proposed WENO-MS scheme provides a comparable or higher resolution of fine structures compared with the WENO-M, WENO-Z and P-WENO schemes, while it increases only 7% of CPU time compared with the traditional WENO-JS scheme. |
资助项目 | Natural Science Foundation of China[11261160486] ; Natural Science Foundation of China[91641107] ; Natural Science Foundation of China[91852116] ; Fundamental Research of Civil Aircraft[MJ-F-2012-04] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000491440200011 |
出版者 | SPRINGER/PLENUM PUBLISHERS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/50705] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Yuan, Li |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China 3.Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China 4.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Yahui,Du, Yulong,Zhao, Kunlei,et al. Modified Stencil Approximations for Fifth-Order Weighted Essentially Non-oscillatory Schemes[J]. JOURNAL OF SCIENTIFIC COMPUTING,2019,81(2):898-922. |
APA | Wang, Yahui,Du, Yulong,Zhao, Kunlei,&Yuan, Li.(2019).Modified Stencil Approximations for Fifth-Order Weighted Essentially Non-oscillatory Schemes.JOURNAL OF SCIENTIFIC COMPUTING,81(2),898-922. |
MLA | Wang, Yahui,et al."Modified Stencil Approximations for Fifth-Order Weighted Essentially Non-oscillatory Schemes".JOURNAL OF SCIENTIFIC COMPUTING 81.2(2019):898-922. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。