中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Transition probability preserving maps on a Grassmann space in a semifinite factor

文献类型:期刊论文

作者Gu, Weichen3; Wu, Wenming1; Yuan, Wei2,3
刊名JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
出版日期2020-07-01
卷号487期号:1页码:7
关键词Transition probability Wigner theorem Grassmann spaces Semifinite factors
ISSN号0022-247X
DOI10.1016/j.jmaa.2020.123957
英文摘要In this paper, the surjective transition probability preserving transformations on the Grassmann space of infinite projections in an infinite semifinite factor are characterized. As in the classical Wigner's theorem, all these maps are induced by *-isomorphisms or *-anti-isomorphisms of the semifinite factor. (C) 2020 Elsevier Inc. All rights reserved.
资助项目National Natural Science Foundation of China[11971463] ; National Natural Science Foundation of China[11871303] ; National Natural Science Foundation of China[11871127] ; Chongqing Science and Technology Commission[Scstc2019jcyj-msxmX0256]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000522798600008
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/50964]  
专题中国科学院数学与系统科学研究院
通讯作者Wu, Wenming
作者单位1.Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Gu, Weichen,Wu, Wenming,Yuan, Wei. Transition probability preserving maps on a Grassmann space in a semifinite factor[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2020,487(1):7.
APA Gu, Weichen,Wu, Wenming,&Yuan, Wei.(2020).Transition probability preserving maps on a Grassmann space in a semifinite factor.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,487(1),7.
MLA Gu, Weichen,et al."Transition probability preserving maps on a Grassmann space in a semifinite factor".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 487.1(2020):7.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。