中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Bounded type Siegel disks of a family of sine families

文献类型:期刊论文

作者Zhang, Song1; Fu, Jianxun2; Shi, Xujie3
刊名JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
出版日期2020-08-01
卷号488期号:1页码:12
关键词Siegel disk Quasi-circle Critical point
ISSN号0022-247X
DOI10.1016/j.jmaa.2020.124041
英文摘要We prove that for any positive integer n, there is a polynomial P(z) with degree n such that the entire function G(z) = P(sin(z)) has a bounded type Siegel disk bounded by a quasi-circle in the plane which passes through at least one critical point of G. In addition, let 0 < theta < 1 be an irrational number of bounded type. We prove that for any integer k >= 0, the boundary of the Siegel disk of G(z) = integral(sin(z))(0) e(2 pi i theta) (1-s(2))(k) ds centered at the origin is a quasi-circle passing through exactly two critical points pi/2 and pi/2 with multiplicity k + 1, respectively. (C) 2020 Elsevier Inc. All rights reserved.
资助项目Fundamental Research Funds for the Central Universities[2019kfyXJJS135] ; National Natural Science Foundation of China[11901219]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000525911000002
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/51076]  
专题中国科学院数学与系统科学研究院
通讯作者Fu, Jianxun
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Peoples R China
3.Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Song,Fu, Jianxun,Shi, Xujie. Bounded type Siegel disks of a family of sine families[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2020,488(1):12.
APA Zhang, Song,Fu, Jianxun,&Shi, Xujie.(2020).Bounded type Siegel disks of a family of sine families.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,488(1),12.
MLA Zhang, Song,et al."Bounded type Siegel disks of a family of sine families".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 488.1(2020):12.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。