Euler-symmetric projective varieties
文献类型:期刊论文
作者 | Fu, Baohua2,3,4; Hwang, Jun-Muk1 |
刊名 | ALGEBRAIC GEOMETRY
![]() |
出版日期 | 2020-05-01 |
卷号 | 7期号:3页码:377-389 |
关键词 | equivariant compactification fundamental form |
ISSN号 | 2313-1691 |
DOI | 10.14231/AG-2020-011 |
英文摘要 | Euler-symmetric projective varieties are nondegenerate projective varieties admitting many C-x-actions of Euler type. They are quasi-homogeneous and uniquely determined by their fundamental forms at a general point. We show that Euler-symmetric projective varieties can be classified by symbol systems, a class of algebraic objects modeled on the systems of fundamental forms at general points of projective varieties. We study relations between the algebraic properties of symbol systems and the geometric properties of Euler-symmetric projective varieties. We also describe the relation between Euler-symmetric projective varieties of dimension n and equivariant compactifications of the vector group G(a)(n). |
资助项目 | National Natural Science Foundation of China[11771425] ; National Natural Science Foundation of China[11688101] ; NRF[2010-0020413] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000525753000004 |
出版者 | EUROPEAN MATHEMATICAL SOC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/51109] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Fu, Baohua |
作者单位 | 1.Korea Inst Adv Study, Hoegiro 85, Seoul 02455, South Korea 2.Chinese Acad Sci, MCM, 55 ZhongGuanCun East Rd, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China 4.Chinese Acad Sci, AMSS, HLM, 55 ZhongGuanCun East Rd, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Fu, Baohua,Hwang, Jun-Muk. Euler-symmetric projective varieties[J]. ALGEBRAIC GEOMETRY,2020,7(3):377-389. |
APA | Fu, Baohua,&Hwang, Jun-Muk.(2020).Euler-symmetric projective varieties.ALGEBRAIC GEOMETRY,7(3),377-389. |
MLA | Fu, Baohua,et al."Euler-symmetric projective varieties".ALGEBRAIC GEOMETRY 7.3(2020):377-389. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。