中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Topology of tensor ranks

文献类型:期刊论文

作者Comon, Pierre4; Lim, Lek-Heng2; Qi, Yang1,5; Ye, Ke3
刊名ADVANCES IN MATHEMATICS
出版日期2020-06-24
卷号367页码:46
关键词Border rank Symmetric rank Multilinear rank Path-connectedness Homotopy groups Bott periodicity
ISSN号0001-8708
DOI10.1016/j.aim.2020.107128
英文摘要We study path-connectedness and homotopy groups of sets of tensors defined by tensor rank, border rank, multilinear rank, as well as their symmetric counterparts for symmetric tensors. We show that over C, the set of rank-rtensors and the set of symmetric rank-rsymmetric tensors are both path-connected if r is not more than the complex generic rank; these results also extend to border rank and symmetric border rank over C. Over R, the set of rank-rtensors is path-connected if it has the expected dimension but the corresponding result for symmetric rank-rsymmetric d-tensors depends on the order d: connected when d is odd but not when d is even. Border rank and symmetric border rank over R have essentially the same path-connectedness properties as rank and symmetric rank over R. When ris greater than the complex generic rank, we are unable to discern any general pattern: For example, we show that border-rank-three tensors in R-2 circle times R-2 circle times R-2 fall into four connected components. For multilinear rank, the manifold of d-tensors of multilinear rank (r(1),..., r(d)) in C-n1 circle times center dot center dot center dot circle times C-nd is always path-connected, and the same is true in R-n1 circle times center dot center dot center dot circle times R-nd unless n(i) = r(i) = Pi(j not equal i) r(j) for some i is an element of{1,..., d}. Beyond path-connectedness, we determine, over both Rand C, the fundamental and higher homotopy groups of the set of tensors of a fixed small rank, and, taking advantage of Bott periodicity, those of the manifold of tensors of a fixed multilinear rank. We also obtain analogues of these results for symmetric tensors of a fixed symmetric rank or a fixed symmetric multilinear rank. (C) 2020 Elsevier Inc. All rights reserved.
资助项目ERC[320594] ; DARPA[D15AP00109] ; NSF[IIS 1546413] ; NSF[DMS 1209136] ; NSF[DMS 1057064] ; DARPA Director's Fellowship ; NSFC[11801548] ; NSFC[11688101] ; National Key R&D Program of China[2018YFA0306702] ; Hundred Talents Program of the Chinese Academy of Sciences ; recruitment program for young professionals of China
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000526414600013
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/51136]  
专题中国科学院数学与系统科学研究院
通讯作者Qi, Yang
作者单位1.Ecole Polytech, IP Paris, CNRS, INRIA Saclay Ile de France, F-91128 Palaiseau, France
2.Univ Chicago, Dept Stat, Computat & Appl Math Initiat, Chicago, IL 60637 USA
3.Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
4.CNRS, GIPSA Lab, F-38402 St Martin Dheres, France
5.Ecole Polytech, IP Paris, CNRS, CMAP, F-91128 Palaiseau, France
推荐引用方式
GB/T 7714
Comon, Pierre,Lim, Lek-Heng,Qi, Yang,et al. Topology of tensor ranks[J]. ADVANCES IN MATHEMATICS,2020,367:46.
APA Comon, Pierre,Lim, Lek-Heng,Qi, Yang,&Ye, Ke.(2020).Topology of tensor ranks.ADVANCES IN MATHEMATICS,367,46.
MLA Comon, Pierre,et al."Topology of tensor ranks".ADVANCES IN MATHEMATICS 367(2020):46.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。