Liouville theorem for poly-harmonic functions on R-+(n)
文献类型:期刊论文
作者 | Dai, Wei1,4; Qin, Guolin2,3 |
刊名 | ARCHIV DER MATHEMATIK
![]() |
出版日期 | 2020-04-15 |
页码 | 11 |
关键词 | Liouville theorems Poly-harmonic functions Super poly-harmonic properties Harmonic asymptotic expansions Navier problems |
ISSN号 | 0003-889X |
DOI | 10.1007/s00013-020-01464-1 |
英文摘要 | In this paper, we will prove a Liouville theorem for poly-harmonic functions on R-+(n) with Navier boundary conditions, that is, the nonnegative poly-harmonic functions u satisfying u(x) = o(vertical bar x vertical bar(3)) at infinity must assume the form u(x) = Cx(n) in <(R-+(n))over bar>, where n >= 2 and C is a nonnegative constant. The assumption u(x) = o(vertical bar x vertical bar(3)) at infinity is optimal for us to derive the super poly-harmonic properties of u. |
资助项目 | NNSF of China[11971049] ; Fundamental Research Funds for the Central Universities ; State Scholarship Fund of China[201806025011] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000526656000001 |
出版者 | SPRINGER BASEL AG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/51169] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Dai, Wei |
作者单位 | 1.Beihang Univ BUAA, Sch Math Sci, Beijing 100083, Peoples R China 2.Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Univ Paris 13, UMR 7539, LAGA, Paris, France |
推荐引用方式 GB/T 7714 | Dai, Wei,Qin, Guolin. Liouville theorem for poly-harmonic functions on R-+(n)[J]. ARCHIV DER MATHEMATIK,2020:11. |
APA | Dai, Wei,&Qin, Guolin.(2020).Liouville theorem for poly-harmonic functions on R-+(n).ARCHIV DER MATHEMATIK,11. |
MLA | Dai, Wei,et al."Liouville theorem for poly-harmonic functions on R-+(n)".ARCHIV DER MATHEMATIK (2020):11. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。