中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Linear invariants of complex manifolds and their plurisubharmonic variations

文献类型:期刊论文

作者Deng, Fusheng2; Wang, Zhiwei3; Zhang, Liyou4; Zhou, Xiangyu1,2,5
刊名JOURNAL OF FUNCTIONAL ANALYSIS
出版日期2020-07-15
卷号279期号:1页码:27
关键词Linear isometry Plurisubharmonic variation Positivity of direct image sheaves Teichmuller metric
ISSN号0022-1236
DOI10.1016/j.jfa.2020.108514
英文摘要For a bounded domain D and a real number p > 0, denote by A(p) (D) the linear space of L-p integrable holomorphic functions on D, equipped with the L-p-pseudonorm. We prove that two bounded hyperconvex domains D-1 subset of C-n and D-2 subset of C-m are biholomorphic (in particular n = m) if there is a linear isometry between A(p) (D-1) and AP(D-2) for some 0 < p < 2. The same result holds for p > 2,p not equal 2,4, ..., provided that the p-Bergman kernels on D-1 and D-2 are exhaustive. With this as a motivation, we show that, for all p > 0, the p-Bergman kernel on a strongly pseudoconvex domain with C-2 boundary or a simply connected homogeneous regular domain is exhaustive. These results show that spaces of pluricanonical sections of complex manifolds equipped with canonical pseudonorms are important linear invariants of complex manifolds. The second part of the present work devotes to studying variations of these invariants. We show that the direct image sheaf of the twisted relative pluricanonical bundle associated to a holomorphic family of Stein manifolds or compact Kahler manifolds is positively curved, with respect to the canonical singular Finsler metric. (C) 2020 Elsevier Inc. All rights reserved.
资助项目NSFC[NSFC-11871451] ; NSFC[NSFC-11701031] ; NSFC[NSFC-11671270] ; NSFC[NSFC-11688101] ; University of Chinese Academy of Sciences ; Beijing Natural Science Foundation[1202012] ; Beijing Natural Science Foundation[Z190003]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000526812300001
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/51181]  
专题中国科学院数学与系统科学研究院
通讯作者Wang, Zhiwei; Zhou, Xiangyu
作者单位1.Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
3.Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
4.Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
5.Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Deng, Fusheng,Wang, Zhiwei,Zhang, Liyou,et al. Linear invariants of complex manifolds and their plurisubharmonic variations[J]. JOURNAL OF FUNCTIONAL ANALYSIS,2020,279(1):27.
APA Deng, Fusheng,Wang, Zhiwei,Zhang, Liyou,&Zhou, Xiangyu.(2020).Linear invariants of complex manifolds and their plurisubharmonic variations.JOURNAL OF FUNCTIONAL ANALYSIS,279(1),27.
MLA Deng, Fusheng,et al."Linear invariants of complex manifolds and their plurisubharmonic variations".JOURNAL OF FUNCTIONAL ANALYSIS 279.1(2020):27.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。