Improve the spectral clustering by integrating a new modularity similarity index and out-of-sample extension
文献类型:期刊论文
作者 | Shen, Dongqin1; Li, Xiuyi2; Yan, Guan3 |
刊名 | MODERN PHYSICS LETTERS B
![]() |
出版日期 | 2020-04-01 |
卷号 | 34期号:11页码:12 |
关键词 | Spectral clustering out-of-sample modularity similarity measure |
ISSN号 | 0217-9849 |
DOI | 10.1142/S0217984920501055 |
英文摘要 | Spectral clustering is one of the most important data processing methods which has been wildly applied to machine learning, computer vision, pattern recognition and image processing. However, one of the main drawbacks of spectral clustering is the fact that the clustering model is defined only for primal data without clear extension to out-of-sample data. To improve its efficiency, in this paper, we proposed a new modularity-based method for spectral clustering with out-of-sample extension. First, kernel independent component analysis is used to solve the demixing matrix on Stiefel manifold in order to extract high-order irrelevant data feature. Then, a new modularity similarity measure-based spectral mapping algorithm is proposed, which allows the clustering model to be directly extended to out-of-sample data. Based on above analysis, we present a spectral clustering algorithm with out-of-sample extension. Experimental results show our method has better performance compared with other related algorithms in different datasets. |
资助项目 | National Key Research and Development Project[2017YFD0401001] ; National Key Research and Development Project[2017YFD0700501] ; National Key Research and Development Project[2018YFD0401404] ; National Natural Science Foundation of China[71871233] ; Beijing Natural Science Foundation[9182015] |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000528496600006 |
出版者 | WORLD SCIENTIFIC PUBL CO PTE LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/51348] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Yan, Guan |
作者单位 | 1.Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China 2.Nanjing Univ Finance & Econ, Sch Informat Engn, Nanjing 210003, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Shen, Dongqin,Li, Xiuyi,Yan, Guan. Improve the spectral clustering by integrating a new modularity similarity index and out-of-sample extension[J]. MODERN PHYSICS LETTERS B,2020,34(11):12. |
APA | Shen, Dongqin,Li, Xiuyi,&Yan, Guan.(2020).Improve the spectral clustering by integrating a new modularity similarity index and out-of-sample extension.MODERN PHYSICS LETTERS B,34(11),12. |
MLA | Shen, Dongqin,et al."Improve the spectral clustering by integrating a new modularity similarity index and out-of-sample extension".MODERN PHYSICS LETTERS B 34.11(2020):12. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。