Liouville type theorems for Hardy-Henon equations with concave nonlinearities
文献类型:期刊论文
作者 | Dai, Wei1,2; Qin, Guolin3,4 |
刊名 | MATHEMATISCHE NACHRICHTEN
![]() |
出版日期 | 2020-04-22 |
页码 | 10 |
关键词 | bi-harmonic concave nonlinearity Hardy-Henon equations Liouville theorems nonnegative solutions super-harmonic property |
ISSN号 | 0025-584X |
DOI | 10.1002/mana.201800532 |
英文摘要 | In this paper, we are concerned with the Hardy-Henon equations -Delta u=|x|aupand Delta 2u=|x|aupwith a is an element of R and p is an element of(0,1]. Inspired by Serrin and Zou [25], we prove Liouville theorems for nonnegative solutions to the above Hardy-Henon equations (Theorem 1.1 and Theorem 1.3), that is, the unique nonnegative solution is u equivalent to 0. |
资助项目 | National Natural Science Foundation of China[11971049] ; National Natural Science Foundation of China[11501021] ; State Scholarship Fund of China[201806025011] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000527608900001 |
出版者 | WILEY-V C H VERLAG GMBH |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/51369] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Dai, Wei |
作者单位 | 1.Beihang Univ BUAA, Sch Math & Syst Sci, Beijing 100083, Peoples R China 2.Univ Paris 13, LAGA, UMR 7539, Paris, France 3.Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Dai, Wei,Qin, Guolin. Liouville type theorems for Hardy-Henon equations with concave nonlinearities[J]. MATHEMATISCHE NACHRICHTEN,2020:10. |
APA | Dai, Wei,&Qin, Guolin.(2020).Liouville type theorems for Hardy-Henon equations with concave nonlinearities.MATHEMATISCHE NACHRICHTEN,10. |
MLA | Dai, Wei,et al."Liouville type theorems for Hardy-Henon equations with concave nonlinearities".MATHEMATISCHE NACHRICHTEN (2020):10. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。