中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
usingsupportvectorclassificationforsaroffentanylderivatives

文献类型:期刊论文

作者Nianyi CHEN1; Youcheng ZHU2; Kaixian CHEN2; Ning DONG1; Wencong Lu1
刊名actapharmacologicasinica
出版日期2005
卷号26期号:1页码:107
关键词MACHINES structure-activity relationship support vector machine fentanyl derivatives support vector classification
ISSN号1671-4083
英文摘要Aim: To discriminate between fentanyl derivatives with high and low activities. Methods: The support vector classification (SVC) method, a novel approach, was employed to investigate structure-activity relationship (SAR) of fentanyl derivatives based on the molecular descriptors, which were quantum parameters including DeltaE energy difference between highest occupied molecular orbital energy (HOMO) and lowest empty molecular orbital energy (LUMO)
语种英语
源URL[http://119.78.100.183/handle/2S10ELR8/288121]  
专题中国科学院上海药物研究所
作者单位1.上海大学
2.中国科学院上海药物研究所
推荐引用方式
GB/T 7714
Nianyi CHEN,Youcheng ZHU,Kaixian CHEN,et al. usingsupportvectorclassificationforsaroffentanylderivatives[J]. actapharmacologicasinica,2005,26(1):107.
APA Nianyi CHEN,Youcheng ZHU,Kaixian CHEN,Ning DONG,&Wencong Lu.(2005).usingsupportvectorclassificationforsaroffentanylderivatives.actapharmacologicasinica,26(1),107.
MLA Nianyi CHEN,et al."usingsupportvectorclassificationforsaroffentanylderivatives".actapharmacologicasinica 26.1(2005):107.

入库方式: OAI收割

来源:上海药物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。